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Abstract  
This paper presents an educational software tool for aid the teaching of Particle Swarm Optimization (PSO) 

fundamentals with friendly design interface. This software were developed in the platform of LabVIEW 

(Laboratory Virtual Intrumentation Engineering Workbench). The software‟s best qualities are users can 

select many different version of the PSO algorithm, a lot of the benchmarks test functions for optimization 

and set the parameters that have an influence on the PSO performance. Through visualization of particle 

distribution in the searching, the simulator is particularly effective in providing users with an intuitive feel 

for the PSO algorithm.  
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Abstrak  
Paper ini mempresentasikan perancangan perangkat lunak pendidikan sebagai alat bantu pengajaran 

materi Particle Swarm Optimization dengan desain antarmuka yang mudah digunakan. Perangkat lunak ini 

dibuat berbasis LabVIEW (Laboratory Virtual Intrumentation Engineering Workbench). Keunggulan dari 

perangkat lunak ini adalah pengguna mendapat pilihan banyak versi yang berbeda dari algoritma PSO, 

terdapat banyak fungsi yang bisa digunakan untuk menguji proses optimasi dan dapat memodifikasi 

parameter-parameter yang akan mempengaruhi performansi dari PSO. Dengan adanya visualisasi dari 

pergerakan particle, perangkat lunak ini akan efektif untuk memberikan pemahaman mengenai prinsip 

algoritma PSO kepada pengguna.  

 

Kata Kunci – Fungsi benchmark, LabVIEW, Particle Swarm Optimization, Algoritma PSO 

 

I. INTRODUCTION 
 

Optimization problems are widely encountered 

in various fields in technology. Some problems 

can be very complex due to the actual and 

practical nature of the objective function or the 

model constraints. With the fast development of 

industrial applications, optimization algorithms 

encounter more and more challenges. 

Optimization algorithms can be classified into 

classical optimization based on gradient of 

objective functions (e.g. Steepest Descent, 

Conjugate Gradient Algorithm and Newton 

Algorithm) and heuristic optimization algorithms 

(e.g. Genetic Algorithms (GA), Simulated 

Annealing (SA) and Particle Swarm Optimization 

(PSO)). For some optimization problems, there is 

no explicit analytical formula, so the gradient 

information cannot be gained. And for high 

dimension of problem, the classical algorithms are 

sometimes not satisfying. Hence, population-

bases heuristic optimization algorithms, which not 

require the derivative information of objective 

functions and return a set of solutions at each 

iteration, are more convenient for solving these 

kinds of problems. 

In 1995, Kennedy and Eberhart suggested a 

PSO based on the analogy of swarm of bird and 

school of fish (J. Kennedy et al., 1995). In PSO, 

each individual makes his decision using his own 

experience together with other individuals 

experiences. The individual particles are drawn 

stochastically toward the present velocity of each 

individual, their own previous best performance 

and the best previous performance of their 

neighbours. 

mailto:ariar554@gmail.com


2 
 
TELEKONTRAN, VOL. 1, NO. 1, JANUARI 2013 

This paper would introduce an educational 

simulator for the PSO algorithm. The purpose of 

this simulator is to provide the users with useable 

tool for gaining an intuitive feel for PSO 

algorithm and mathematical optimization 

problems. To aid the understanding PSO, the 

simulator has been developed under the user-

friendly graphic user interface (GUI) environment 

using LabVIEW. In this simulator, the users can 

select many different version of the PSO 

algorithm and set parameters related to the 

performance of PSO and can observe the impact 

of the parameters to the solution quality. This 

simulator also displayed the movements of each 

particle and convergence process of a group. This 

educational simulator is used in Artificial 

Intelligent and Intelligent Control course of 

Electrical Engineering and Computer Engineering 

Graduate Program at Universitas Komputer 

Indonesia. 

Some researchers have integrated PSO into 

different kinds of toolboxes. Lee and Park 

developed Educational Simulator for Particle 

Swarm Optimization and Economic Dipatch 

Applications based on MATLAB (W. N. Lee et 

al., 2011). Coelho and Sierakowski developed A 

Software tool for teaching particle swarm 

optimization fundamental based on MATLAB 

(L.d.S. Coelhu et al., 2008). Qi, Hu and Cournede 

developed a particle swarm optimization in Scilab 

(R.Qi et al., 2009). However, most of them are 

implemented in MATLAB or Scilab. As far as the 

author concerns, there is no work on development 

of educational simulator for particle swarm 

optimization based on LabVIEW. This toolbox 

can be widely used, not simply as a „black box‟, 

but also as a basis to understand the principles of 

optimization algorithms by making it possible for 

user to easily read, change or tune algorithms and 

algorithm parameters. 

The paper is arranged as follows. Overview of 

particle swarm optimization are descibed in 

Section II. In Section III The features of 

educational PSO simulator are introduced. 

Mathematical optimization problems is presented 

in Section IV. Its performance is analyzed in 

Section V. Finally, the conclusion is given in 

Section VI.  

 

II. PARTICLE SWARM 

OPTIMIZATION 
 

PSO is a kind of heuristic optimization 

algorithms. It is motivated from simulating certain 

simplified animal social behaviors such as bird 

flocking. It is an iterative and population-based 

method. The particles are descibed by their two 

instinct properties: position and velocity. The 

position of each particle represents a point in the 

parameter space, which a possible solution of the 

optimization problem, and the velocity is used to 

change the position.  

 

A. The Original Particle Swarm 

Optimization Algorithm 
 

In order to optimize an unconstrained 𝑑-

dimensional objective function 𝑓 ∶ ℝ𝑑 →  ℝ, the 

original PSO algorithm [J. Kennedy, et al. (1995)] 

is initialized with a population of complete 

solutions (called particles)  𝑝1 , … , 𝑝𝑘 = 𝒫 are 

randomly initialized in the solution space. The 

objective function determines the quality of a 

particle‟s position, that is, the quality of the 

solution it represents. 

Each particle 𝑝𝑖  at time step 𝑡 has a position 

vector 𝑥𝑖    
𝑡
 and a associated velocitiy vector 𝑣𝑖    

𝑡
. 

Every particle “remembers” the position in which 

it has received the best evaluation of the objective 

function. This memory is represents by vector 

𝑝𝑏𝑒 𝑠𝑡𝑖 . This vector is updated every time particle 

𝑝𝑖  finds a better position. At the swarm level, the 

vector 𝑔𝑏𝑒 𝑠𝑡 stores the best position any particle 

has ever visited. 

The algorithm iterates updating particles 

velocity and position until a stopping criterion is 

met, usually a maximum number of iterations or a 

sufficiently good solution. The update rules are : 

 

𝑣𝑖    
𝑡+1

= 𝑣𝑖    
𝑡

+ 𝜑1 ∙ 𝑈   1 0,1 ∗  𝑝𝑏𝑒 𝑠𝑡𝑖
 − 

 𝑥𝑖    
𝑡
 + 𝜑2 ∙ 𝑈   2 0,1 ∗  𝑔𝑏𝑒 𝑠𝑡 −  

 𝑥𝑖    
𝑡
  

(1) 

𝑥𝑖    
𝑡+1

= 𝑥𝑖    
𝑡

+ 𝑣𝑖    
𝑡+1

 (2) 

 

Where 𝜑1 and 𝜑2 are two constant called the 

cognitive and social acceleration coefficients 

repectively, 𝑈   1 0,1  and 𝑈   2 0,1  are two d-

dimensional uniformly distributed random vector 

(generated every iteration) in which each 

component goes from zero to one, and ∗ is an 

element-by-element vector multiplication 
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operator. The values of 𝜑1 and 𝜑2 are parameters 

of the algorithm. 

In the original PSO algorithm a particle has 

two attractors: its own previous best position and 

the swarm‟s global best position. Previous 

experience with population-based optimization 

algorithms dictated that a strong bias towards the 

best solution so far may lead to premature 

convergence. Therefore, the local version of the 

PSO algorithm was devised. 

The variants we include in this study selected 

either because they are among the most 

commonly used in the field or because they look 

promising. 

 

B. Local Particle Swarm Optimizer 
 

An early variant of the original PSO algorithm 

was proposed by Eberhart and Kennedy [R. 

Eberhart, et al. (1995)] in which a particle does 

not accelerate towards the swarm‟s global best 

solution. Instead, it accelerates towards the best 

solution found within its local topological 

neighborhood. A particle 𝑝𝑖  has a topological 

neighborhood 𝒩𝑖 ⊆ 𝒫 (𝒫 =  𝑝1 , … , 𝑝𝑘  is the set 

of particles in the swarm) of particles.  

In the local PSO algorithm, Equation (2) 

becomes 

 

𝑣𝑖    
𝑡+1

= 𝑣𝑖    
𝑡

+ 𝜑1 ∙ 𝑈   1 0,1 ∗  𝑝𝑏𝑒 𝑠𝑡𝑖
 − 

 𝑥𝑖    
𝑡
 + 𝜑2 ∙ 𝑈   2 0,1 ∗  𝑙𝑏𝑒 𝑠𝑡𝑖

 − 

 𝑥𝑖    
𝑡
  

(3) 

 

Where vector 𝑙𝑏𝑒 𝑠𝑡𝑖  stores the best position in the 

neighborhood has ever visited. Mohais et al. [A. 

Mohais, et.al. (2005)] reported that random 

topologies have the same or even better 

performance than nonrandom topologies. 

 

C. Canonical Particle Swarm Optimizer 
 

Clerc and Kennedy [M. Clerc, et al. (2002)] 

introduced a constriction factor into the velocity 

update rule of the original PSO algorithm. The 

purpose of this factor is to avoid particles 

velocities to increase towards infinity and to 

control the convergence properties of the 

particles. 

This constriction factor is added to Equation 

(3) giving 

 

𝑣𝑖    
𝑡+1

= 𝒳 ∙  𝑣𝑖    
𝑡

+ 𝜑1 ∙ 𝑈   1 0,1 ∗  𝑝𝑏𝑒 𝑠𝑡𝑖
   

− 𝑥𝑖    
𝑡
 + 𝜑2 ∙ 𝑈   2 0,1 ∗  𝑙𝑏𝑒 𝑠𝑡𝑖

 − 

  𝑥𝑖    
𝑡
   

(4) 

 

with  

 

𝒳 =
2 ∙ 𝑘

 2 − 𝜑 −  𝜑2 − 4𝜑 
 

(5) 

 

where 𝑘 ∈  0,1 , 𝜑 = 𝜑1 + 𝜑2 and 𝜑 > 4. 

Usually, 𝑘 is set to 1 and both 𝜑1 and 𝜑2 are set 

to 2.05, giving as a results 𝒳 equal to 0.729. 

 

D. Time-Varying Decreasing Inertia 

Weight Particle Swarm Optimizer 
 

Shi and Eberhart [Y. Shi, et al. (1999)] 

introduced the idea of a control factor called 

inertia weight to control the diversification-

intensification behavior of the original PSO. The 

velocity update rule was modified as follows 

 

𝑣𝑖    
𝑡+1

= 𝑤 𝑡 ∙ 𝑣𝑖    
𝑡

+ 𝜑1 ∙ 𝑈   1 0,1 ∗ 

 𝑝𝑏𝑒 𝑠𝑡𝑖 −  𝑥𝑖    
𝑡
 + 𝜑2 ∙ 𝑈   2 0,1   

∗  𝑙𝑏𝑒 𝑠𝑡𝑖 − 𝑥𝑖    
𝑡
  

(6) 

 

where 𝑤 𝑡  is the inertia weight which is usually 

a time-dependent function. 𝜑1 and 𝜑2 are set to 2. 

Since we want the algorithm to explore the 

search space during the first iterations and focus 

on the promising regions afterwards, 𝑤 𝑡  should 

be a time-decreasing function of time.  

The function used to schedule the inertia 

weight is defined as 

 

𝑤 𝑡 = 𝑤𝑚𝑎𝑥 −
 𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛  ∙ 𝑡

𝑡𝑚𝑎𝑥
 (7) 

 

where 𝑡𝑚𝑎𝑥  marks the time at which 𝑤 𝑡 =
𝑤𝑚𝑖𝑛 , 𝑤𝑚𝑎𝑥  and 𝑤𝑚𝑖𝑛 are the maximum and 

minimum values the inertia weight can take. The 

most widely used approach, is the one that uses a 

decreasing inertia weight with a starting value of 

0.9 and 0.4 as the final one. 
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E. Time-Varying Increasing Inertia 

Weight Particle Swarm Optimizer 
 

Zheng  [Y.L. Zheng, et al. (2003)] studied the 

effects of using a time-increasing inertia weight 

function showing also that, in some cases, it 

provides a faster convergence rate. 

The function used to schedule the inertia weight 

is defined as 

 

𝑤 𝑡 = 𝑤𝑚𝑖𝑛 −
 𝑤𝑚𝑖𝑛 − 𝑤𝑚𝑎𝑥  ∙ 𝑡

𝑡𝑚𝑎𝑥
 (8) 

 

Zheng et al., use increasing inertia weight with a 

starting value of 0.4 and the final value 0.9. 

 

F. Time-Varying Stochastic Inertia 

Weight Particle Swarm Optimizer 
 

Eberhart and Shi [R. Eberhart, et al. (2001)] 

proposed another variant in which the inertia 

weight is randomly selected according to a 

uniform distribution in the range [0..5, 1.0]. This 

range was inspired by Clerc and Kennedy‟s 

constriction factor because the expected value of 

the inertia weight in this case in 0.75 ≈ 0.729. 

 

G. Fully Informed Particle Swarm 

Optimizer 
 

Mendes et al. [R. Mendes, et. Al. (2004)] 

proposed the fully informed particle swarm, in 

which a particle uses information provided by all 

its neighbors in order to update its velocity. 

The new velocity update equation becomes 

 

𝑣𝑖    
𝑡+1

= 𝒳  𝑣𝑖    
𝑡

+  𝜑𝑘 ∙ 𝒲 𝑝𝑏𝑒 𝑠𝑡𝑘 

𝒫𝑘∈𝒩𝑖

 ∙ 

 𝑈   𝑘 0,1 ∗  𝑝𝑏𝑒 𝑠𝑡𝑘 − 𝑥𝑖    
𝑡
   

(9) 

 

where 𝒩𝑖  is the neighborhood of particle 𝑖, 
𝒲 𝑝𝑏𝑒 𝑠𝑡𝑘  is a weighting function. The goal of 

𝒲 𝑝𝑏𝑒 𝑠𝑡𝑘  is to provide information about the 

quality of the attractor 𝑝𝑏𝑒 𝑠𝑡𝑖 . For example, the 

normalized objective function value of the vector 

𝑝𝑏𝑒 𝑠𝑡𝑖  could serve well. 

 

H. Self Organizing Hierarchical Particle 

Swarm Optimizer with Time-varying 

Acceleration Coefficients 
 

Proposed by Ratnaweera [A. Ratnaweera, et al. 

(2004)], in HPSOTVAC, if any component of a 

particle‟s velocity vector becomes zero, it is 

reinitialized to a value proportional to the 

maximum allowable velocity 𝑉𝑚𝑎𝑥 . To amplify 

the local search behaviour of the swarm, 

HPSOTVAC linearly adapts the value of the 

acceleration coefficients 𝜑1 and 𝜑2. The cognitive 

coefficient, 𝜑1, is decreased from 2.5 to 0.5 and 

the social coefficient, 𝜑2, is increased from 0.5 to 

2.5. 

To avoid the problem of setting a proper 

reinitialization velocity, HPSOTVAC linearly 

decreases it from 𝑉𝑚𝑎𝑥  at the beginning of the run 

to 0.1 ∙ 𝑉𝑚𝑎𝑥  at the end. As in the time-decreasing 

inertia weight variant, a low reinitialization 

velocity near the end of the run, allows particles 

to move slowly near the best region they found. 

I. Hierarchical Particle Swarm 

Optimizer 
 

 In H-PSO, all particles are arranged in a 

hierarchy that defines the neighborhood structure. 

Each particle is neighbored to itslef and its parent 

in the hierarchy. In this research we used reguler 

tree like hierarchies. The hierarchy is defined by 

the height 𝑕, the branching degree 𝑑, the 

maximum number of children of the inner nodes 

and the total number of nodes 𝑚 of the 

corresponding tree. We use only hierarchies in 

which all inner nodes have the same number of 

children, only the inner nodes on the deepest level 

might have a smaller number of children. 

The new position of the particles within the 

hierarchy are determined as follows. For every 

particle 𝑗 in a node of the tree, its own best 

solution is compared to the best solution found by 

the particles in the child nodes. If the best of these 

particles is better, then child particles and parents 

particles swap their place within the hierarchy. 

For the update of the velocities in AH-PSO, a 

particle is influenced by its own so far best 

position and by the best position of the individual 

that is directly above in the hierarchy. 

Similar as in PSO, after the particles velocities 

are updated and after the particles have moved in 

H-PSO, the objective function is evaluated at the 

new position. If the function value at this position 

is better than the function value at the personal 

best position, the personal best position is update. 

 

J. Adaptive Hierarchical Particle Swarm 

Optimizer 
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Proposed by Janson and Middendorf [S. 

Janson, et al. (2005)], In the Adaptive H-PSO 

(AH-PSO) , the branching degree is gradually 

decreased during a run of the algorithm by 𝑘𝑎𝑑𝑎𝑝𝑡  

degrees until a certain minimum degree 𝑑𝑚𝑖𝑛  is 

reached. This process takes place every 𝑓𝑎𝑑𝑎𝑝𝑡  

number of iterations 

 

K. Estimation of Distribution Particle 

Swarm Optimizer 
 

Proposed by Iqbal, [M. Iqbal, et al.], the 

EDPSO borrows some ideas from 𝐴𝐶𝑂ℝ. EDPSO 

works as a canonical PSO but with some 

modifications : after the execution of the velocity 

update rule shown in Equation (4), EDPSO selects 

one Gaussian function. Then, the selected 

Gaussian function is evaluated to probabilistically 

move the particle to its new position. If the 

movement is successful, the algorithm continues 

as usual, but if the movement is unsuccessful, 

then the selected Gaussian function is sampled in 

the same way as 𝐴𝐶𝑂ℝ. 

 

III. EDUCATIONAL PSO 

SIMULATOR 
 

This educational PSO simulator can solve 

maximization or minimization problems without 

transforming the formulas of optimization 

problems. It can show convergence curve in real-

time and particle distribution in the searching 

space. This educational PSO simulator considers 

different PSO algorithm. The variants of PSO 

algorithm integrated into this educational PSO 

simulator are listed in Table 2. 

 

Table 2. Variants of PSO algorithm integrated 

into simulator 

Algorithm Reference 

Original PSO 
J. Kennedy, et al. 

(1995) 

Local PSO 
R. Eberhart, et al. 

(1995) 

Canonical PSO 
M. Clerc, et al. 

(2002) 

Decreasing Inertia 

Weight PSO 
Y. Shi, et al. (1999) 

Increasing Inertia 

Weight PSO 

Y.L. Zheng, et al. 

(2003) 

Stochastic Inertia 

Weight PSO 

R. Eberhart, et al. 

(2001) 

Fully Informed PSO 
R. Mendes, et. Al. 

(2004) 

Self-Organizing 

Hierarchical PSO with 

Time-Varying 

Acceleration 

Coefficients 

A. Ratnaweera, et 

al. (2004) 

Hierarchical PSO C.-C. Chen (2009) 

Adaptive Hierarchical 

PSO 

S. Janson, et al. 

(2005) 

Estimation of 

Ditribution PSO 
M. Iqbal, et al 

 

The educational PSO simulator are arranged in 

three layers : Functions Selection, 3D Function 

Display dan Optimization Process. In the 

Functions Selection Layers, the user can select the 

mathematical function problem. Figure 1 show 

the main view of the Educational PSO Simulator. 

At least there are 100 function available which 

user can select. Figure 2 show the Function 

Selection Layers. In the left of the front panel is 

the list of mathematical function available to 

select. 

 

 
Figure 1. Front Panel of Educational PSO 

Simulator 

 

 
Figure 2. Functions Selection Layers 

 

 
Figure 3. 3D Function Display Layers 
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Figure 4. Optimization Process Layers 

 

3D Function Display Layers is used to display 

the function in 3D view. The user can rotate the 

function to get better view of the problem. Figure 

3 show the 3D Function Display Layers of the 

Educational PSO Simulator. 

The Optimization Process Layers is used to set 

the PSO algorithm, to set parameters that have an 

influence on the PSO performance and to 

visualization process of each particle. Figure 4 

show the Optimization Process Layers. 

 

IV. MATHEMATICAL 

OPTIMIZATION PROBLEMS 
 

Several kinds of function benckmark problems 

are chosen to demonstrate the performace of 

simulator. For the case study, we choose 5 

mathematical examples : (i) Sphere function, (ii) 

Rosenbrock function, (iii) Ackley‟s function, (iv) 

Rastrigin function, (v) Griewank function. 

The function and the range of input variables 

of Sphere Function are as follows : 

 

min
𝑥

𝑓 𝑥  =  𝑥𝑖
2

𝑁

𝑖=1

 

−5.12 ≤ 𝑥𝑖 ≤ 5.12 

(10) 

 

The function and the range of input variables 

of Schaffer Function are as follows : 

 

min
𝑥

𝑓 𝑥  = 0.5 +
𝑎 𝑥  

𝑏 𝑥  
 

𝑎 𝑥  = 𝑠𝑖𝑛2 𝑥1
2 + 𝑥2

2 − 0.5 

𝑏 𝑥  =  1 + 0.001 𝑥1
2 + 𝑥2

2  
2
 

−100 ≤ 𝑥𝑖 ≤ 100 

(11) 

 

The function and the range of input variables 

of Ackley‟s Function are as follows : 

 

min
𝑥

𝑓 𝑥  = 𝑎 𝑥  + 𝑏 𝑥  + 20 + 𝑒1 

𝑎 𝑥  = −20 ∙ 𝑒𝑥𝑝  −0.2 1

𝑁
 𝑥𝑖

2
𝑁

𝑖=1
  

𝑏 𝑥  = −𝑒𝑥𝑝  
1

𝑁
 cos 2𝜋 ∙ 𝑥𝑖 

𝑁

𝑖=1
  

−32.768 ≤ 𝑥𝑖 ≤ 32.768 

(12) 

 

The function and the range of input variables 

of Rastrigin Function are as follows : 

 

min
𝑥

𝑓 𝑥  = 10𝑁 +   𝑥𝑖
2 − 

𝑁

𝑖=1

 

 10 cos   2𝜋𝑥𝑖   

−5.12 ≤ 𝑥𝑖 ≤ 5.12 

(13) 

 

The function and the range of input variables 

of Shekel‟s Foxholes Function are as follows : 

 

min
𝑥

𝑓 𝑥  =
1

0.002 + 𝑔 𝑥  
 

𝑔 𝑥  =  
1

𝑗 +  𝑥1 − 𝑎1𝑗  
6

+  𝑥2 − 𝑎2𝑗  
6

25

𝑗 =1

 

 𝑎𝑖𝑗  =  
−32 −16 0 … 32
−32 −32 −32 … 32

  

−65.536 ≤ 𝑥𝑖 ≤ 65.536 

(14) 

 

V. EXAMPLES 
 

In this section, Simulator is run in Windows 7 

platform in the version of LabVIEW 7. 

 

A. Visualization Process 
 

The series picture in Figure 5 shows a run of 

the Fully Informed Particle Swarm on the Sphere 

Function. Specifically it shows the 0th, 20th, 40th, 

60th, 80th and 100th iterations of the run. As the 

particles continue in the run, they reach lower and 

lower fitness values (signified by an inceased 

amount of yellow dot) thus minimizing the 

function. Figure 5 also displayed the convergence 

process of a group. 
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(a) 0th iterations 

 
(b) 20th iterations 

 
(c) 40th iterations 

 
(d) 60th iterations 

 
(e) 80th iterations 

 
(f) 100th iterations 

Figure 5. A run of Simulator on the Sphere 

FUnction 

 

B. Parameter Settings 
 

We decide to test the particle swarm 

optimizers that we included in our study without 

tuning their set of parameters specifically for each 

test problem. All algorithms were run with the 

same set of parameters over all test problems. The 

specific parameter settings were those that are 

normally used in the literature. Table 4 lists the 

algorithms fixed parameter settings that we use in 

our experiments.  

The maximum number of evaluations to find a 

solution was set to 100. We ran the algorithms 

100 times on each problem. Maximum velocity 

𝑉𝑚𝑎𝑥  is clamped to ±𝑋𝑚𝑎𝑥  where 𝑋𝑚𝑎𝑥  is the 

maximum of the search range. 

 

Table 4. Algorithm fixed parameter settings 

Algorithm Settings 

Original 

PSO 

Cognitive component  𝜑1  = 2.05 

Social component  𝜑2  = 2.05 

Local PSO 

Cognitive component  𝜑1  = 2.05 

Social component  𝜑2  = 2.05 

Number of Neighborhood = 3 
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Canonical 

PSO 

Cognitive component  𝜑1  = 2.05 

Social component  𝜑2  = 2.05 

Constriction factor  𝒳  = 0.729 

Number of Neighborhood = 3 

Decreasing 

Inertia 

Weight 

Cognitive component  𝜑1  = 2.05 

Social component  𝜑2  = 2.05 

Initial inertia weight = 0.9 

Final inertia weight = 0.4 

Number of Neighborhood = 3 

Increasing 

Inertia 

Weight 

Cognitive component  𝜑1  = 2.05 

Social component  𝜑2  = 2.05 

Final inertia weight = 0.9 

Initial inertia weight = 0.4 

Number of Neighborhood = 3 

Stochastic 

Inertia 

Weight 

Cognitive component  𝜑1  = 2.05 

Social component  𝜑2  = 2.05 

Minimum inertia weight = 0.4 

Maximum inertia weight = 0.9 

Number of Neighborhood = 3 

Fully 

Informed 

PSO 

Sum of the acc. coeff.  𝜑  = 4.1 

Constriction factor  𝒳  = 0.729 

Number of Neighborhood = 3 

Self 

Organizing 

Hierarchical 

PSO 

Initial value of 𝜑1 = 2.5 

Final value of  𝜑1 = 0.5 

Initial value of 𝜑2 = 0.5 

Final value of 𝜑2 = 0.5 

Number of Neighborhood = 3 

Hierarchical 

PSO 

Cognitive component  𝜑1  = 2 

Social component  𝜑2  = 2 

w = 0.9 

r = 0.95 

height of the tree (h) = 3 

branching degree (d) = 4 

Adaptive 

Hierarchical 

PSO 

Cognitive component  𝜑1  = 2.05 

Social component  𝜑2  = 2.05 

Constriction factor  𝒳  = 0.729 

Initial Branching factor = 20 

d min = 2 

f adapt/m = 10 

k adapt = 3 

Estimation 

of 

Distribution 

PSO 

Cognitive component  𝜑1  = 2.05 

Social component  𝜑2  = 2.05 

Constriction factor  𝒳  = 0.729 

q = 0.1 

epsilone = 0.85 

 

C. Convergence Results 
 

Two input variables (i.e., 2-dimensional space) 

have been set in order to show the movement of 

particles on contour. 30 independent trials are 

conducted to observe the variation during the 

evoltionary processes and compare the solution 

quality and convergence characteristics. 

To successfully implement the PSO, some 

parameters must be assigned in advance. The 

population size NP is set to 20. Since the 

performance of PSO depends on its parameters 

such as inertia weight or acceleration coefficients, 

it is very important to determine the suitable 

values of parameters. 

Initial and final stages of the optimization 

process for the Sphere function are shown if 

Figure 6. 

 

 
(a) Initial stage 

 
(b) Final stage 

Figure 6. Optimization process for the Sphere 

Function 

 

Initial and final stages of the optimization 

process for the Schaffer function are shown if 

Figure 7. 
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(a) Initial stage 

 
(b) Final stage 

Figure 7. Optimization process for the Schaffer 

Function 

 

Initial and final stages of the optimization 

process for the Ackley‟s function are shown if 

Figure 8. 

 

 
(a) Initial stage 

 
(b) Final stage 

Figure 8. Optimization process for the Ackley‟s 

Function 
 

Initial and final stages of the optimization 

process for the Rastrigin function are shown if 

Figure 9. 

 

 
(a) Initial stage 

 
(b) Final stage 

Figure 9. Optimization process for the Rastrigin 

Function 
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Initial and final stages of the optimization 

process for the Shekel‟s Foxholes function are 

shown if Figure 10. 

 

 
(a) Initial stage 

 
(b) Final stage 

Figure 10. Optimization process for the Shekel‟s 

Foxholes Function 

 

D. Optimization Results 
 

Table 5 – Table 15 shows the summary result 

of 10 runs using each PSO algorithm. 

 

Table 5. Summary of result of 10 runs using 

Original PSO 

Function Mean Min Max 

Sphere 0.001000 0.000000 0.006000 

Schaffer 0.382000 0.000000 1.910000 

Ackley 0.355000 0.000000 1.965000 

Rastrigin 0.000000 0.000000 0.000000 

Shekel 

Foxholes 
2.499000 1.001000 3.968000 

 

 

Table 6. Summary of result of 10 runs using 

Local PSO 

Function Mean Min Max 

Sphere 0.000000 0.000000 0.000000 

Schaffer 0.401000 0.000000 1.798000 

Ackley 0.337000 0.000000 2.397000 

Rastrigin 0.164000 0.000000 1.049000 

Shekel 

Foxholes 
2.066000 0.998000 5.914000 

 

Table 7. Summary of result of 10 runs using 

Canonical PSO 

Function Mean Min Max 

Sphere 0.000000 0.000000 0.000000 

Schaffer 0.036000 0.000000 0.057000 

Ackley 0.001000 0.000000 0.002000 

Rastrigin 0.122000 0.000000 0.995000 

Shekel 

Foxholes 
5.394000 0.998000 16.441000 

 

Table 8. Summary of result of 10 runs using 

Decreasing Inertia Weight PSO 

Function Mean Min Max 

Sphere 0.000000 0.000000 0.000000 

Schaffer 0.122000 0.000000 0.313000 

Ackley 0.005000 0.001000 0.013000 

Rastrigin 0.119000 0.000000 1.013000 

Shekel 

Foxholes 
2.965000 0.998000 10.763000 

 

Table 9. Summary of result of 10 runs using 

Increasing Inertia Weight PSO 

Function Mean Min Max 

Sphere 0.000000 0.000000 0.000000 

Schaffer 0.134000 0.055000 0.314000 

Ackley 0.004000 0.000000 0.013000 

Rastrigin 0.129000 0.000000 0.996000 

Shekel 

Foxholes 
1.832000 0.998000 3.975000 

 

Table 10. Summary of result of 10 runs using 

Stochastic Inertia Weight PSO 

Function Mean Min Max 

Sphere 0.000000 0.000000 0.000000 

Schaffer 0.348000 0.000000 0.864000 

Ackley 0.110000 0.000000 0.693000 

Rastrigin 0.108000 0.000000 0.436000 

Shekel 

Foxholes 
2.066000 0.998000 4.101000 
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Table 11. Summary of result of 10 runs using 

Fully Informed PSO 

Function Mean Min Max 

Sphere 0.000000 0.000000 0.000000 

Schaffer 0.105000 0.000000 0.298000 

Ackley 0.002000 0.000000 0.005000 

Rastrigin 0.100000 0.000000 0.996000 

Shekel 

Foxholes 
3.271000 0.998000 7.874000 

 

Table 12. Summary of result of 10 runs using 

HPSOTYAC 

Function Mean Min Max 

Sphere 0.000000 0.000000 0.000000 

Schaffer 0.062000 0.016000 0.104000 

Ackley 0.001000 0.000000 0.004000 

Rastrigin 0.199000 0.000000 0.995000 

Shekel 

Foxholes 
4.236000 0.998000 12.671000 

 

Table 13. Summary of result of 10 runs using 

Hierarchical PSO 

Function Mean Min Max 

Sphere 0.000009 0.000000 0.000037 

Schaffer 1.308884 0.998004 2.775963 

Ackley 0.061050 0.011576 0.138272 

Rastrigin 0.081365 0.006938 0.239305 

Shekel 

Foxholes 
1.073859 0.998013 1.461168 

 

Table 14. Summary of result of 10 runs using 

Adaptive Hierarchical PSO 

Function Mean Min Max 

Sphere 0.000000 0.000000 0.000000 

Schaffer 0.059000 0.015000 0.128000 

Ackley 0.001000 0.000000 0.006000 

Rastrigin 0.299000 0.000000 0.995000 

Shekel 

Foxholes 
3.530000 0.998000 15.504000 

 

Table 15. Summary of result of 10 runs using 

Estimation of Distribution PSO  

Function Mean Min Max 

Sphere 0.000000 0.000000 0.000000 

Schaffer 0.062000 0.006000 0.128000 

Ackley 0.000000 0.000000 0.002000 

Rastrigin 0.241000 0.000000 0.997000 

Shekel 

Foxholes 
1.595000 0.998000 3.968000 

 

VI. CONCLUSION 
 

This paper presents an educational simulator 

for particle swarm optimization (PSO) and 

application for solving mathematical test 

functions. Using this simulator, instructor and 

students can select the test functions for 

simulation and set the parameters that have an 

influence on the PSO performance. Through 

visualization process of each particle and 

variation of the value of objective function, the 

simulator is particularly effective in providing 

users with an intuitive feel for the PSO algorithm. 

This simulator is expected to be an useful tool for 

students. 

In the present version of educational simulator 

of PSO, only unconstrained optimization 

problems can be solved. The PSO algorithms for 

constrained optimization problems will be 

integrated to simultor soon. 

 

REFERENCES 
 
[1] A. Mohais, R. Mendes, C. Ward, and C. Postoff, (2005), 

“Neighborhood restructuring in particle swarm optimization”, 

Proceedings of the 18th Australian Joint Conference on 

Artificial Intelligence, Berlin, pp 776 – 785. 

[2] A. Ratnaweera, S.K. Halgamuge, and H.C. Watson (2004), 

“Self-Organizing Hierarchical Particle Swarm Optimizer With 

Time-Varying Acceleration Coefficients”, IEEE Transactions 

on Evolutionary Computation, Vol. 8, No. 3, pp 240 – 255 

[3] C.-C. Chen, (2009),  “Hierarchical Particle Swarm 

Optimization for Optimization Problems”, Tamkang Journal of 

Science and Engineering, Vol. 12, No. 3, pp. 289 – 298  

[4] J. Kennedy and R. Eberhart (1995). “Particle Swarm 

Optimization”, Proc. IEE Int. Conf Neural Networks 

(ICNN‟95), vol. IV, Perth, Australia, pp 1942 – 1948 

[5] L.d.S. Coelho and C. A. Sierakowski (2008), “A Software Tool 

for Teaching of Particle Swarm Optimization Fundamentals”, 

ScienceDirect Advances in Engineering Software, Vol 39, pp 

877 – 887 

[6] M. Clerc and J. Kennedy (2002), “The Particle Swarm-

Explosion, Stability and Convergence in a Multidimensional 

Complex Space”, IEEE Transactions on Evolutionary 

Computation, vol 6, num. 1, pp 58 - 73 

[7] M. Iqbal, Marco A. Montes, “An Estimation of Distribution 

Particle Swarm Optimization Algorithm” 

[8] Second (2nd) ICEO : Second International Contest on 

Evolutionary Optimization, www-document, 

http://iridia.ulb.ac.be/langerman/2ndICEO.html 

[9] R. Eberhart and J. Kennedy (1995), “A new optimizer using 

particle swarm theory” In Proceedings of the 6th International 

Symposium on Micro Machine and Human Science, 

Piscataway, NJ, IEEE Press, pp 39 -43 

[10] R. Eberhart, Y. Shi (2001), “Tracking and optimizing dynamic 

systems with particle swarms”, In proceedings of the 2001 

IEEE Congress on Evolutionary Computation, Pisctaway, NJ, 

IEEE Press, pp 94 - 100 

[11] R. Mendes, J. Kennedy, J. Neves, (2004), “The Fully Informed 

Particle Swarm : Simpler, maybe better”, IEEE Transactions 

on Evolutionary Computation, vol 8, no. 3, pp 204 - 210 

[12] R. Qi, B. Hu and P.H. Cournede, “PSOTS : A Particle Swarm 

Optimization Toolbox in Scilab”, OSSC, pp 107 – 114, (2009) 

[13] S. Janson, M. Middendorf, (2005), “A Hierarchical Particle 

Swarm Optimizer and Its Adaptive Variant”, IEEE 



12 
 
TELEKONTRAN, VOL. 1, NO. 1, JANUARI 2013 

Transactions on Systems, Man and Cybernetics, Vol. 35, No 6, 

pp 1272 – 1282  

[14] W. N. Lee and J. B. Park (2011), “Educational Simulator for 

Partilce Swarm Optimization and Economic Dispatch 

Applications”, MATLAB – A Ubiquitous Tool for the Practical 

Engineer, pp 81 – 110 

[15] Y. L.. Zheng, L.H. Ma, L.Y. Zhang, J.X. Qian, (2003) 

“Empirical study of particle swarm optimizer with an 

increasing inertia weight”, In: Proceedings of the 2003 IEEE 

Congress on Evolutionary Computation, Piscataway, NJ, IEEE 

Press, pp 221 - 226 

[16] Y. Shi, R. Eberhart (1999), “Empirical study of particle swarm 

optimization”, In: Proceedings of the 1999 IEEE Congress on 

Evolutionary Computation, Piscatawaym, NJ, IEEE Press, pp 

1945 - 1950 

[17] Birge B. “PSOt – a particle swarm optimization toolbox for use 

with Matlab.” Proceedings of the swarm intelligence 

symposium Indianapolis, USA, pp 182 – 186, (2003) 

[18] Hartmut Pohlheim, “Genetic and Evolutionary Algorithm 

Toolbox for Matlab : GEATbx Examples; Examples of 

Objective Functions”, (December 2006) 

[19] Hartmut Pohlheim, “Genetic and Evolutionary Algorithm 

Toolbox for Matlab : GEATbx Introduction; Evolutionary 

Algorithms: Overview, Methods and Operators” , (December 

2006) 

[20] Hartmut Pohlheim, “Genetic and Evolutionary Algorithm 

Toolbox for Matlab : GEATbx Tutorial” , (December 2006) 

[21] Kenneth Lee, “Particle Swarm Optimization and Social 

Interactions Between Agents”, (2008) 

[22] J. K. Vis, “Particle Swarm Optimizer for Finding Robust 

Optima”, (June 2009) 

[23] Juan R. Castro, Oscar Castillo, Luis G. Martinez, “Interval 

Type-2 Fuzzy Logic Toolbox” 

[24] Marco A. Montes, T. Stutzle, M. Birattari and M. Dorigo, “A 

Comparison of Particle Swarm Optimization Algorithms Based 

on Run-Length Distributions” 

[25] Marco A. Montes, “On the Performance of Particle Swarm 

Optimizers”, IRIDIA (2006) 

[26] M. Settles, “An Introduction to Particle Swarm Optimization”, 

(November 2005) 

[27] R. Poli, J. Kennedy and T. Blackwell, “Particle Swarm 

Optimization : An Overview”, Swarm Intell, Vol. 1, pp 33 – 57, 

(August 2007)  

[28] R. C. Eberhart, Y. Shi, “Particle Swarm Optimization: 

Developments, Applications and Resources”, IEEE, pp 81 – 86, 

(2001) 

[29] R. Umarani, V. Selvi, “Particle Swarm Optimization – 

Evolution, Overview and Application”, International Journal of 

Engineering Science and Technologi, Vol. 2(7), pp 2802 – 

2806, (2010) 

[30] S. Das, A. Abraham, A. Konar, “Particle Swarm Optimization 

and Differential Evolution Algorithms : Technical Analysis, 

Application and Hybridization Perspectives”, Studies in 

Computational Intelligence,  116, pp 1-38, (2008) 

[31]  “Simple Optimization Toolbox For Use with Matlab”, 

(November 2006) 

[32] Ernesto P. Adorio, MVF – Multivariate Test Functions Library 

in C for Unconstrained Global Optimization, (2005) 

[33] Hartmun Pohlheim, Genetic and Evolutionary Algorithm 

Toolbox for Matlab (GEATbx) Examples of Objective 

Functions, (2006) 

[34] M. Montaz Ali, A Numerical Evaluation of Several Stochastic 

Algorithms on Selected Continuous Global Optimization Test 

Problem, (2005) 

[35] Marcin Molga, Czeslas Smutnicki, Test Function for 

Optimization Need, (2005) 

[36] Kaj Madsen, Julius Zilinskas, Testing branch-and-bound 

methods for global optimization, (2000) 

[37] Xin-She Yang, Test Problem in Optimization, in: Engineering 

Optimization: An Introduction with Metaheuristic Applications 

(Eds Xin-She Yang), John Wiley & Sons. (2010) 

[38] A. Georgieva, I. Jordanov, “Global Optimization Based on 

Novel Heuristics, Low-Discrepancy Sequences and Genetic 

Algorithms”, European Journal of Operational Research, Vol. 

196, pp 413 – 422, (2009) 

[39] Ali, M., Pant, M. And Abraham, A. “Simplex Differential 

Evolution”, Acta Polythechnica Hungarica, Vol. 6, No. 5, 

(2009) 

[40] Aluffi-Pentini, F., Parisi, V. And Zirilli, F., Global 

Optimization and Stochastic Differential Equations. Journal of 

Optimization Theory and Application 47, 1-16., (1985) 

[41] Benke,K.K. and Skinner, D.R., A Direct Search Algorithm for 

Global Optimization of Multivariate Functions. The Autralian 

Computer Journal 23, 73 – 85. (1991) 

[42] Bohachevsky, M.E., Johnson, M.E. and Stein, M.L., 

Generalized Simulated Annealing for Function Optimization, 

Technometrics 28, 209-217., (1986) 

[43] Breiman, L. and Cutler, A., A Deterministic Algorithm for 

Global Optimization, Mathematical Programming 58, 179 – 

199., (1993) 

[44] Corana, A., Marchesi, M., Martini, C. and Ridella, S., 

Minimizing Multimodal Functions of Continuous Variables 

with the “Simulated Annealing Algorithm”, ACM Transactions 

on Mathematical Software, pp 272 – 280, (1987) 

[45] Dekkers, A. And Aarts, E., Global Optimization and Simulated 

Annealing, Mathematical Programming 50, pp. 367 – 393, 

(1991) 

[46] Dixon, L. And Szego, G., Toward Global Optimization, North 

Holland, New York, (1975) 

[47] Dixon, L. and Szego, G., Toward Global Optimization, Vol. 2, 

North Holland, New York, (1978) 

[48] Griewank, A.O., Generalized Descent for Global Optimization. 

Journal of Optimization Theory and Applications 34, 11-39, 

(1981) 

[49] Himmelblau, D.M., Applied Nonlinear Programming, 

McGraw-Hill, New York, (1972) 

[50] Ingber, L., Simulated Annealing : Practice Versus Theory, 

Jurnal of Mathematical and Computer Modeling, Vol. 18, no 

11, pp 29 – 57, (1993) 

[51] Jansson, C. And Knuppel, O., A Branch and Bound Algorithm 

for Bound Constrained Optimization Problems without 

Derivatives. Journal of Global Optimization 7, 297 – 331, 

(1995) 

[52] K. Muller and L. D. Brown, Location of Saddle Points and 

Minimum Energy Paths by a Constrained Simplex Optimization 

Procedure, Theoret. Chim. Acta, 53:75-93, (1979) 

[53] Kwon, Y.D., Kwon, S.B., and Kim, J.Y., Convergence 

Enhanced Genetic Algorithm with Successive Zooming Method 

for Solving Continuous Optimization Problems, Computers and 

Structures 81, pp. 1715 – 1725, (2003) 

[54] Levy, A.V. and Montalvo, A., The Tunneling Algorithm for the 

Global Minimization of Functions. Society for Industrial and 

Applied Mathematics 6, 15 – 29, (1985) 

[55] M. J. Hirsch, P. M. Pardalos, M.G.C.Resende, Speeding Up 

Continuous Grasp, AT&T Labs Research Technical Report, 

(2006) 

[56] Mathworks, Global Optimization Toolbox User’s Guide, 2011 

[57] McCormick, G.P., Applied Nonlinear Programming, Theory, 

Algorithms and Applications, John Wiley and Sons, New York, 

(1982) 

[58] Muhlenbein, H., Schomisch, S. and Born, J., The Parallel 

Genetic Algorithm s Function Optimizer, Proceedings of the 

Fourth International Conference on Genetic Algorithms, 

Morgan Kaufman : 271-278, (1991) 

[59] Neumaier, A., Global and Local Optimization, www-

document, http://solon.cma.univie.ac.at/~neum/glopt.html, 

(2003) 

[60] Price, W. L., Global Optimization by Controlled Random 

Search, Computer Journal 20, 367 – 370, (1977) 

[61] Price, K.V., Private Communication, 836 Owl Circle, 

Vacaville, CA 95687, (2002) 

[62] Michalewicz, Z., Genetic Algorithms + Data Structures = 

Evolution Programs, Springer-Verlag, Berlin/Heidelberg/New 

York, (1996) 

[63] Rody P. S. Oldenhuis, www-document, (2009) 

[64] Salomon, R., Reevaluating Genetic Algorithms Performance 

Under Coordinate Rotation of Benchmark Functions, 

BioSystems 39(3): 263 – 278, (1995) 

[65] Schwefel, H.P., Evolution and Optimum Seeking, John Wiley 

and Sons, New York, (1995) 



13 
 
TELEKONTRAN, VOL. 1, NO. 1, JANUARI 2013 

[66] Storn, R. And Price, K., Differential Evolution : A Simple and 

Efficient Heuristic for Global Optimization Over Continuous 

Spaces. Journal of Global Optimization 11, 341 – 359, (1997) 

[67] Thangaraj, R., Pant, M., Abraham A. And Snasel, V. Modified 

Particle Swarm Optimization with Time Varying Velocity 

Vector, International  Journal of Innovative Computing, 

Information and Control, Vol. 8, Num. 1(A), (2012) 

[68] Torn, A. And Zilinskas, A., Global Optimization, Lecture 

Notes in Computer Science, Vol. 350, Springer-Verlag, 

Berlin/Heidelberg/New York, (1989) 

[69] W. Wang, T.-M. Hwang, C.Juang, J. Juang, C.-Y. Liu and W.-

W. Lin., Chaotic Behaviors of Bistabe Laser Diodes and Its 

Application in Synchronization of Optical Communication, 

Japanese Journal of Applied Physics, 40 (10) : 5914-5919, 

(2001) 

[70] Wolfe, M.A, Numerical Methods for Unconstrained 

Optimization, Van Nostrand Reinhold Company, New York, 

(1978) 

[71] Zabinsky, Z.B. Graesser, D.L., Tuttle, M.E. and Kim, G.I., 

Global Optimization of Composite Laminates using Improving 

Hit and Run, In: Floudas C. And Pardalos P. (eds.), pp. 343 – 

368. Recent Advances in Global Optimization, Princeton 

University Press, (1992) 

 

 

  



14 
 
TELEKONTRAN, VOL. 1, NO. 1, JANUARI 2013 

Appendix A. A Collection of Benchmark Optimization Test Problems 
 

No Name Source 
No. Of 

Vars. 

Upper Bound, 

Lower Bound 
Global Optimum 

1.  Ackley Function Storn & Price (1997) 1 – N (-32.768, 32.768) 0 

2.  Alphine Function R. Thangaraj et al. (2012) 1 – N (-10, 10) 0 

3.  Aluffi-Pentini Function Aluffi-Pentiti et al. (1985) 2 (-10,10) -0.3523 

4.  Banana Shape Function  2 (-2, 2) -25 

5.  Beale Function Ernesto P. Adorio (2005) 2 (-4.5, 4.5) 0 

6.  Becker & Lago Function Price (1997) 2 (-10, 10) 0 

7.  Bird Function  2 (-20, 20) -106.764536 

8.  Bohachevsky 1 Function Bohachevsky et al. (1986) 2 (-50, 50) 0 

9.  Bohachevsky 2 Function Bohachevsky et al. (1986) 2 (-50, 50) 0 

10.  Booth Function Ernesto P. Adorio (2005) 2 (-10, 10) 0 

11.  Box and Betts Function Kaj Madsen (2000) 3 
(0.9, 1.2); (9, 

11.2); (0.9, 1.2) 
0 

12.  Branin RCOS Function Dixon and Szego (1978) 2 (-5, 10); (0, 15) 0.397887357 

13.  Bukin Function  2 (-20, 20) 0 

14.  Camel Function  2 (-2, 2) -7.0625 

15.  3-Hump Camel Function Dixon and Szego (1975) 2 (-5, 5) 0 

16.  6-Hump Camel Function Dixon and Szego (1975) 2 (-5, 5) -1.03162845 

17.  Carrom Table Function Rody P. S. O. (2009) 2 (-10, 10) -24.1568155 

18.  Chichinadze Function Rody P. S. O. (2009) 2 (-30, 30) -42.9443870 

19.  Colville Function Ali, M. et. Al (2009) 4 (0, 10) 0 

20.  Corana‟s Parabola Function Corana (1987) 4 (-1000, 1000) 0 

21.  Cosine Mixture Function Breiman and Culter (1993) 1 – N (-1, 1) 
0.2 for N = 2 
0.4 for N = 4 

22.  Cross-in-tray Function Rody P. S. O. (2009) 2 (-10, 10) -2.06261187 

23.  Cross-leg table Function Rody P. S. O. (2009) 2 (-10, 10) -1 

24.  Crowned Cross Function Rody P. S. O. (2009) 2 (-10, 10) 0.0001 

25.  Deceptive Functions Marcin Molga (2005) 2 - N (0, 1)  

26.  Dekkers and Aarts Function Dekkers and Aarts (1991) 2 (-10, 10) -24777 

27.  Dixon and Price Function  1 – N (-10, 10)  

28.  Drop Wave Functions Marcin Molga (2005) 2 (-5.12, 5.12) -1 

29.  Easom‟s Functions Michalewicz (1996) 2 – N (-60, 60) -1 

30.  Eggholder Function Ernesto P. Adorio (2005) 2 – N (-512, 512) -959.64 for N = 2 

31.  
Epistatic Michalewicz 

Function 
Second ICEO 5, 10 (0, pi) -4.687658 for N = 5 

32.  Exponential Function Breiman and Culter (1993) 1 – N (-1, 1) 1 

33.  Giunta Function Rody P. S. O. (2009) 2 (-1, 1) 0,0644704205 

34.  Goldstein-Price‟s function Dixon and Szego (1978) 2 (-2, 2) 3 

35.  Griewank „s Function Griewank (1981) 1 – N (-600, 600) 0 

36.  Gulf Research Problem Himmelblau (1972) 3 (0.1, 100) 0 

37.  Hartman 3 Problem Dixon and Szego (1978) 3 (0, 1) -3.86278214782 

38.  Hartman 6 Problem Dixon and Szego (1978) 6 (0,1) -3.32236801141 

39.  Helical Valley Problem Wolfe (1978) 3 (-10, 10) 0 

40.  Himmelblau Function Ernesto P. Adorio (2005) 2 (-6, 6) 0 

41.  Holder Table Function Rody P. S. O. (2009) 2 (-10, 10) -19.2085025678 

42.  Hosaki Function Benke and Skinner (1991) 2 (0, 6) -2.3458 

43.  Hyper-ellipsoid function Storn & Price (1997) 1 – N (-5.12, 5.12) 0 

44.  Kowalik Function 
Jansson and Knuppel 

(1995) 
4 (0, 0.42) 0.00030748 

45.  Kwon Function Kwon (2003) 2 (-1, 1) -16.0917200 

46.  Langermann‟s Function Marcin Molga (2005) 2 (0, 10) -4.15581 

47.  Levy and Montalvo 1 Function Levy and Montalvo (1985) 1 – N (-10, 10) 0 

48.  Levy and Montalvo 2 Function Levy and Montalvo (1985) 1 – N (-10, 10) 0 

49.  Lyapunov Exponents Wang (2001) 2 (20, 30)  

50.  Matyas Function Ernesto P. Adorio (2005) 2 (-10, 10) 0 

51.  McCormik Function McCormik (1982) 2 (-1.5, 4), (-3, 3) -1.9133 

52.  Meyer and Roth Function Wolfe, 1978 3 (-10, 10) 0.0004 

53.  Michalewicz‟s Function Second ICEO 2 – N (0, pi) 
-1.8013 for N = 2 
-4.6876 for N = 5 

-9.660 for N = 10 

54.  Miele and Cantrell Function Wolfe, 1978 4 (-1, 1) 0 
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55.  Modified Langerman Function Second ICEO 5, 10 (0, 10) -0.965 

56.  
Muller-Brown Surface 

Function 
K. Muller, (1979) 2 (-1.5, 1) -146. 699 

57.  Multi-Gaussian Function Benke & Skinner, (1991) 2 (-2, 2) 1.29695 

58.  Multimod Function Ernesto P. Adorio (2005) 1 – N (-10, 10) 0 

59.  Neumaier 2 Function Neumaier (2003) 4 (0, 4) 0 

60.  Neumaier 3 Function Neumaier (2003) 2 – N (-N^2, N^2) -(N*(N+4)*(N-1))/6 

61.  Odd Square Function Second ICEO 2 – 20 (-15, 15) -1.143833 

62.  Paviani Function Kaj Madsen, 2000 10 (2.001, 9.999) -45.77847 

63.  Peaks Function Mathworks, 2011 2 (-4, 4) -6.55113 

64.  Penholder Function Rody P. S. O. (2009) 2 (-11, 11) -0.9635348327265 

65.  Periodic Function Price (1977) 2 (-10, 10) 0.9 

66.  Perm Function Xin-She Yang (2010) 2 - N (-N, N) 0 

67.  Perm0 Function Xin-She Yang (2010) 2 - N (-N, N) 0 

68.  Powell‟s Quadratic Function Wolfe (1978) 4 (-10, 10) 0 

69.  
Price‟s Transistor Modelling 

Function 
Price (1977) 9 (-10, 10) 0 

70.  Quartic Function Ali, M. et. Al (2009) 2 – N (-1.28, 1.28) Random 

71.  Rastrigin‟s Function Torn and Zilinskas (1989) 1 – N (-5.12, 5.12) 0 

72.  Rosenbrock‟s Function Schwefel (1995) 2 – N (-2.048, 2.048) 0 

73.  
Rotated Hyper-Ellipsoid 

Function 
Marcin Molga (2005) 1 – N (-65.536, 65.536) 0 

74.  Salomon Function Salomon (1995) 2 – N (-100, 100) 0 

75.  Sawtoothxy Function Mathworks, 2011 2 (-20, 20) 0 

76.  Schaffer 1  Function Michalewicz (1996) 2 – N (-100, 100) 0 

77.  Schaffer 2  Function Michalewicz (1996) 2 – N (-100, 100) 0 

78.  Schwefel‟s Function Muhlenbein (1991) 1 – N (-500, 500) -418.9829N 

79.  Shekel 5 Function Dixon and Szego (1978) 4 (0, 10) -10.1531996790582 

80.  Shekel 7 Function Dixon and Szego (1978) 4 (0, 10) -10.4029405668187 

81.  Shekel 10 Function Dixon and Szego (1978) 4 (0, 10) -10.5364098166920 

82.  Shekel‟s Foxholes Marcin Molga (2005) 2 (-65.536, 65.536) 0.998004 

83.  Shekel‟s Foxholes Function 5d Dixon and Szego (1978) 5, 10 (0, 10) -10.5046, fot N = 5 

84.  Shubert‟s Function Levy and Montalvo (1985) 2 – N (-10, 10) -186.7309, for N = 2 

85.  Shubert‟s Function 2 R. Thangaraj et al. (2012) 2 – N (-10, 10) -24.062499 

86.  Sinusoidal Function Zabinsky (1992) 2 – N (0, 180) 
-(A+1), default A = 

2.5 

87.  Sphere Function Storn & Price (1997) 1 – N (-5.12, 5.12) 0 

88.  Step Function R. Thangaraj et al. (2012) 1 – N (-1, 1) 0 

89.  
Sum of Different Power 

Functions 
Marcin Molga (2005) 1 – N (-1, 1) 0 

90.  Storn‟s Tchebychev Function Price (2002) 9 (-128, 128) 0 

91.  Testtube holder function Rody P. S. O. (2009) 2 (-10, 10) -10.872299901558 

92.  Trefethen4 Function Ernesto P. Adorio (2005) 2 
(-6.5, 6.5); (-4.5, 

4.5) 
-3.30686865 

93.  Trid Function M.J.Hirsch (2006) 2 – N (-N^2, N^2) 
-50 for N = 6 

-210 for N = 10 

94.  Tripod Function Ali, M. et. Al (2009) 2 (-100, 100) 0 

95.  Whitley Function A. Georgieva (2009) 2 – N (-100, 100) 0 

96.  Wood Function Wolfe (1978) 4 (-10, 10) 0 

97.  Xin-She Yang‟s Function 1 Xin-She Yang (2010) 1 – N (-2pi, 2pi) 0 

98.  Xin-She Yang‟s Function 2 Xin-She Yang (2010) 1 – N (-10, 10) -0.6065 

99.  Xin-She Yang‟s Function 3 Xin-She Yang (2010) 2 – N (-20, 20) -1 for beta = 15 

100.  Xin-She Yang‟s Function 4 Xin-She Yang (2010) 1 – N (-10, 10) -1 

101.  Xin-She Yang‟s Function 5 Xin-She Yang (2010) 2 (0, 10) Random 

102.  Zakharov Function Xin-She Yang (2010) 2 – N (-10, 10) 0 

103.  Zettl Function Rody P. S. O. (2009) 2 (-10, 10) -0.0037912372204 

 

  


