
1

TELEKONTRAN, VOL. 1, NO. 1, JANUARI 2013

Educational Simulator for Teaching of Particle Swarm

Optimization in LabVIEW

Perangkat Lunak Edukatif Berbasis LabVIEW sebagai Alat Bantu

Pengajaran Particle Swarm Optimization

Muhammad Aria
Universitas Komputer Indonesia

Jl. Dipati ukur No 112, Bandung

Email : ariar554@gmail.com

Abstract
This paper presents an educational software tool for aid the teaching of Particle Swarm Optimization (PSO)

fundamentals with friendly design interface. This software were developed in the platform of LabVIEW

(Laboratory Virtual Intrumentation Engineering Workbench). The software‟s best qualities are users can

select many different version of the PSO algorithm, a lot of the benchmarks test functions for optimization

and set the parameters that have an influence on the PSO performance. Through visualization of particle

distribution in the searching, the simulator is particularly effective in providing users with an intuitive feel

for the PSO algorithm.

Keyword : Benchmark Function, LabVIEW, Particle Swarm Optimization, PSO Algorithm

Abstrak
Paper ini mempresentasikan perancangan perangkat lunak pendidikan sebagai alat bantu pengajaran

materi Particle Swarm Optimization dengan desain antarmuka yang mudah digunakan. Perangkat lunak ini

dibuat berbasis LabVIEW (Laboratory Virtual Intrumentation Engineering Workbench). Keunggulan dari

perangkat lunak ini adalah pengguna mendapat pilihan banyak versi yang berbeda dari algoritma PSO,

terdapat banyak fungsi yang bisa digunakan untuk menguji proses optimasi dan dapat memodifikasi

parameter-parameter yang akan mempengaruhi performansi dari PSO. Dengan adanya visualisasi dari

pergerakan particle, perangkat lunak ini akan efektif untuk memberikan pemahaman mengenai prinsip

algoritma PSO kepada pengguna.

Kata Kunci – Fungsi benchmark, LabVIEW, Particle Swarm Optimization, Algoritma PSO

I. INTRODUCTION

Optimization problems are widely encountered

in various fields in technology. Some problems

can be very complex due to the actual and

practical nature of the objective function or the

model constraints. With the fast development of

industrial applications, optimization algorithms

encounter more and more challenges.

Optimization algorithms can be classified into

classical optimization based on gradient of

objective functions (e.g. Steepest Descent,

Conjugate Gradient Algorithm and Newton

Algorithm) and heuristic optimization algorithms

(e.g. Genetic Algorithms (GA), Simulated

Annealing (SA) and Particle Swarm Optimization

(PSO)). For some optimization problems, there is

no explicit analytical formula, so the gradient

information cannot be gained. And for high

dimension of problem, the classical algorithms are

sometimes not satisfying. Hence, population-

bases heuristic optimization algorithms, which not

require the derivative information of objective

functions and return a set of solutions at each

iteration, are more convenient for solving these

kinds of problems.

In 1995, Kennedy and Eberhart suggested a

PSO based on the analogy of swarm of bird and

school of fish (J. Kennedy et al., 1995). In PSO,

each individual makes his decision using his own

experience together with other individuals

experiences. The individual particles are drawn

stochastically toward the present velocity of each

individual, their own previous best performance

and the best previous performance of their

neighbours.

mailto:ariar554@gmail.com

2

TELEKONTRAN, VOL. 1, NO. 1, JANUARI 2013

This paper would introduce an educational

simulator for the PSO algorithm. The purpose of

this simulator is to provide the users with useable

tool for gaining an intuitive feel for PSO

algorithm and mathematical optimization

problems. To aid the understanding PSO, the

simulator has been developed under the user-

friendly graphic user interface (GUI) environment

using LabVIEW. In this simulator, the users can

select many different version of the PSO

algorithm and set parameters related to the

performance of PSO and can observe the impact

of the parameters to the solution quality. This

simulator also displayed the movements of each

particle and convergence process of a group. This

educational simulator is used in Artificial

Intelligent and Intelligent Control course of

Electrical Engineering and Computer Engineering

Graduate Program at Universitas Komputer

Indonesia.

Some researchers have integrated PSO into

different kinds of toolboxes. Lee and Park

developed Educational Simulator for Particle

Swarm Optimization and Economic Dipatch

Applications based on MATLAB (W. N. Lee et

al., 2011). Coelho and Sierakowski developed A

Software tool for teaching particle swarm

optimization fundamental based on MATLAB

(L.d.S. Coelhu et al., 2008). Qi, Hu and Cournede

developed a particle swarm optimization in Scilab

(R.Qi et al., 2009). However, most of them are

implemented in MATLAB or Scilab. As far as the

author concerns, there is no work on development

of educational simulator for particle swarm

optimization based on LabVIEW. This toolbox

can be widely used, not simply as a „black box‟,

but also as a basis to understand the principles of

optimization algorithms by making it possible for

user to easily read, change or tune algorithms and

algorithm parameters.

The paper is arranged as follows. Overview of

particle swarm optimization are descibed in

Section II. In Section III The features of

educational PSO simulator are introduced.

Mathematical optimization problems is presented

in Section IV. Its performance is analyzed in

Section V. Finally, the conclusion is given in

Section VI.

II. PARTICLE SWARM

OPTIMIZATION

PSO is a kind of heuristic optimization

algorithms. It is motivated from simulating certain

simplified animal social behaviors such as bird

flocking. It is an iterative and population-based

method. The particles are descibed by their two

instinct properties: position and velocity. The

position of each particle represents a point in the

parameter space, which a possible solution of the

optimization problem, and the velocity is used to

change the position.

A. The Original Particle Swarm

Optimization Algorithm

In order to optimize an unconstrained 𝑑-

dimensional objective function 𝑓 ∶ ℝ𝑑 → ℝ, the

original PSO algorithm [J. Kennedy, et al. (1995)]

is initialized with a population of complete

solutions (called particles) 𝑝1 , … , 𝑝𝑘 = 𝒫 are

randomly initialized in the solution space. The

objective function determines the quality of a

particle‟s position, that is, the quality of the

solution it represents.

Each particle 𝑝𝑖 at time step 𝑡 has a position

vector 𝑥𝑖
𝑡
 and a associated velocitiy vector 𝑣𝑖

𝑡
.

Every particle “remembers” the position in which

it has received the best evaluation of the objective

function. This memory is represents by vector

𝑝𝑏𝑒 𝑠𝑡𝑖 . This vector is updated every time particle

𝑝𝑖 finds a better position. At the swarm level, the

vector 𝑔𝑏𝑒 𝑠𝑡 stores the best position any particle

has ever visited.

The algorithm iterates updating particles

velocity and position until a stopping criterion is

met, usually a maximum number of iterations or a

sufficiently good solution. The update rules are :

𝑣𝑖
𝑡+1

= 𝑣𝑖
𝑡

+ 𝜑1 ∙ 𝑈 1 0,1 ∗ 𝑝𝑏𝑒 𝑠𝑡𝑖
 −

 𝑥𝑖
𝑡
 + 𝜑2 ∙ 𝑈 2 0,1 ∗ 𝑔𝑏𝑒 𝑠𝑡 −

 𝑥𝑖
𝑡

(1)

𝑥𝑖
𝑡+1

= 𝑥𝑖
𝑡

+ 𝑣𝑖
𝑡+1

 (2)

Where 𝜑1 and 𝜑2 are two constant called the

cognitive and social acceleration coefficients

repectively, 𝑈 1 0,1 and 𝑈 2 0,1 are two d-

dimensional uniformly distributed random vector

(generated every iteration) in which each

component goes from zero to one, and ∗ is an

element-by-element vector multiplication

3

TELEKONTRAN, VOL. 1, NO. 1, JANUARI 2013

operator. The values of 𝜑1 and 𝜑2 are parameters

of the algorithm.

In the original PSO algorithm a particle has

two attractors: its own previous best position and

the swarm‟s global best position. Previous

experience with population-based optimization

algorithms dictated that a strong bias towards the

best solution so far may lead to premature

convergence. Therefore, the local version of the

PSO algorithm was devised.

The variants we include in this study selected

either because they are among the most

commonly used in the field or because they look

promising.

B. Local Particle Swarm Optimizer

An early variant of the original PSO algorithm

was proposed by Eberhart and Kennedy [R.

Eberhart, et al. (1995)] in which a particle does

not accelerate towards the swarm‟s global best

solution. Instead, it accelerates towards the best

solution found within its local topological

neighborhood. A particle 𝑝𝑖 has a topological

neighborhood 𝒩𝑖 ⊆ 𝒫 (𝒫 = 𝑝1 , … , 𝑝𝑘 is the set

of particles in the swarm) of particles.

In the local PSO algorithm, Equation (2)

becomes

𝑣𝑖
𝑡+1

= 𝑣𝑖
𝑡

+ 𝜑1 ∙ 𝑈 1 0,1 ∗ 𝑝𝑏𝑒 𝑠𝑡𝑖
 −

 𝑥𝑖
𝑡
 + 𝜑2 ∙ 𝑈 2 0,1 ∗ 𝑙𝑏𝑒 𝑠𝑡𝑖

 −

 𝑥𝑖
𝑡

(3)

Where vector 𝑙𝑏𝑒 𝑠𝑡𝑖 stores the best position in the

neighborhood has ever visited. Mohais et al. [A.

Mohais, et.al. (2005)] reported that random

topologies have the same or even better

performance than nonrandom topologies.

C. Canonical Particle Swarm Optimizer

Clerc and Kennedy [M. Clerc, et al. (2002)]

introduced a constriction factor into the velocity

update rule of the original PSO algorithm. The

purpose of this factor is to avoid particles

velocities to increase towards infinity and to

control the convergence properties of the

particles.

This constriction factor is added to Equation

(3) giving

𝑣𝑖
𝑡+1

= 𝒳 ∙ 𝑣𝑖
𝑡

+ 𝜑1 ∙ 𝑈 1 0,1 ∗ 𝑝𝑏𝑒 𝑠𝑡𝑖

− 𝑥𝑖
𝑡
 + 𝜑2 ∙ 𝑈 2 0,1 ∗ 𝑙𝑏𝑒 𝑠𝑡𝑖

 −

 𝑥𝑖
𝑡

(4)

with

𝒳 =
2 ∙ 𝑘

 2 − 𝜑 − 𝜑2 − 4𝜑

(5)

where 𝑘 ∈ 0,1 , 𝜑 = 𝜑1 + 𝜑2 and 𝜑 > 4.

Usually, 𝑘 is set to 1 and both 𝜑1 and 𝜑2 are set

to 2.05, giving as a results 𝒳 equal to 0.729.

D. Time-Varying Decreasing Inertia

Weight Particle Swarm Optimizer

Shi and Eberhart [Y. Shi, et al. (1999)]

introduced the idea of a control factor called

inertia weight to control the diversification-

intensification behavior of the original PSO. The

velocity update rule was modified as follows

𝑣𝑖
𝑡+1

= 𝑤 𝑡 ∙ 𝑣𝑖
𝑡

+ 𝜑1 ∙ 𝑈 1 0,1 ∗

 𝑝𝑏𝑒 𝑠𝑡𝑖 − 𝑥𝑖
𝑡
 + 𝜑2 ∙ 𝑈 2 0,1

∗ 𝑙𝑏𝑒 𝑠𝑡𝑖 − 𝑥𝑖
𝑡

(6)

where 𝑤 𝑡 is the inertia weight which is usually

a time-dependent function. 𝜑1 and 𝜑2 are set to 2.

Since we want the algorithm to explore the

search space during the first iterations and focus

on the promising regions afterwards, 𝑤 𝑡 should

be a time-decreasing function of time.

The function used to schedule the inertia

weight is defined as

𝑤 𝑡 = 𝑤𝑚𝑎𝑥 −
 𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛 ∙ 𝑡

𝑡𝑚𝑎𝑥
 (7)

where 𝑡𝑚𝑎𝑥 marks the time at which 𝑤 𝑡 =
𝑤𝑚𝑖𝑛 , 𝑤𝑚𝑎𝑥 and 𝑤𝑚𝑖𝑛 are the maximum and

minimum values the inertia weight can take. The

most widely used approach, is the one that uses a

decreasing inertia weight with a starting value of

0.9 and 0.4 as the final one.

4

TELEKONTRAN, VOL. 1, NO. 1, JANUARI 2013

E. Time-Varying Increasing Inertia

Weight Particle Swarm Optimizer

Zheng [Y.L. Zheng, et al. (2003)] studied the

effects of using a time-increasing inertia weight

function showing also that, in some cases, it

provides a faster convergence rate.

The function used to schedule the inertia weight

is defined as

𝑤 𝑡 = 𝑤𝑚𝑖𝑛 −
 𝑤𝑚𝑖𝑛 − 𝑤𝑚𝑎𝑥 ∙ 𝑡

𝑡𝑚𝑎𝑥
 (8)

Zheng et al., use increasing inertia weight with a

starting value of 0.4 and the final value 0.9.

F. Time-Varying Stochastic Inertia

Weight Particle Swarm Optimizer

Eberhart and Shi [R. Eberhart, et al. (2001)]

proposed another variant in which the inertia

weight is randomly selected according to a

uniform distribution in the range [0..5, 1.0]. This

range was inspired by Clerc and Kennedy‟s

constriction factor because the expected value of

the inertia weight in this case in 0.75 ≈ 0.729.

G. Fully Informed Particle Swarm

Optimizer

Mendes et al. [R. Mendes, et. Al. (2004)]

proposed the fully informed particle swarm, in

which a particle uses information provided by all

its neighbors in order to update its velocity.

The new velocity update equation becomes

𝑣𝑖
𝑡+1

= 𝒳 𝑣𝑖
𝑡

+ 𝜑𝑘 ∙ 𝒲 𝑝𝑏𝑒 𝑠𝑡𝑘

𝒫𝑘∈𝒩𝑖

 ∙

 𝑈 𝑘 0,1 ∗ 𝑝𝑏𝑒 𝑠𝑡𝑘 − 𝑥𝑖
𝑡

(9)

where 𝒩𝑖 is the neighborhood of particle 𝑖,
𝒲 𝑝𝑏𝑒 𝑠𝑡𝑘 is a weighting function. The goal of

𝒲 𝑝𝑏𝑒 𝑠𝑡𝑘 is to provide information about the

quality of the attractor 𝑝𝑏𝑒 𝑠𝑡𝑖 . For example, the

normalized objective function value of the vector

𝑝𝑏𝑒 𝑠𝑡𝑖 could serve well.

H. Self Organizing Hierarchical Particle

Swarm Optimizer with Time-varying

Acceleration Coefficients

Proposed by Ratnaweera [A. Ratnaweera, et al.

(2004)], in HPSOTVAC, if any component of a

particle‟s velocity vector becomes zero, it is

reinitialized to a value proportional to the

maximum allowable velocity 𝑉𝑚𝑎𝑥 . To amplify

the local search behaviour of the swarm,

HPSOTVAC linearly adapts the value of the

acceleration coefficients 𝜑1 and 𝜑2. The cognitive

coefficient, 𝜑1, is decreased from 2.5 to 0.5 and

the social coefficient, 𝜑2, is increased from 0.5 to

2.5.

To avoid the problem of setting a proper

reinitialization velocity, HPSOTVAC linearly

decreases it from 𝑉𝑚𝑎𝑥 at the beginning of the run

to 0.1 ∙ 𝑉𝑚𝑎𝑥 at the end. As in the time-decreasing

inertia weight variant, a low reinitialization

velocity near the end of the run, allows particles

to move slowly near the best region they found.

I. Hierarchical Particle Swarm

Optimizer

 In H-PSO, all particles are arranged in a

hierarchy that defines the neighborhood structure.

Each particle is neighbored to itslef and its parent

in the hierarchy. In this research we used reguler

tree like hierarchies. The hierarchy is defined by

the height 𝑕, the branching degree 𝑑, the

maximum number of children of the inner nodes

and the total number of nodes 𝑚 of the

corresponding tree. We use only hierarchies in

which all inner nodes have the same number of

children, only the inner nodes on the deepest level

might have a smaller number of children.

The new position of the particles within the

hierarchy are determined as follows. For every

particle 𝑗 in a node of the tree, its own best

solution is compared to the best solution found by

the particles in the child nodes. If the best of these

particles is better, then child particles and parents

particles swap their place within the hierarchy.

For the update of the velocities in AH-PSO, a

particle is influenced by its own so far best

position and by the best position of the individual

that is directly above in the hierarchy.

Similar as in PSO, after the particles velocities

are updated and after the particles have moved in

H-PSO, the objective function is evaluated at the

new position. If the function value at this position

is better than the function value at the personal

best position, the personal best position is update.

J. Adaptive Hierarchical Particle Swarm

Optimizer

5

TELEKONTRAN, VOL. 1, NO. 1, JANUARI 2013

Proposed by Janson and Middendorf [S.

Janson, et al. (2005)], In the Adaptive H-PSO

(AH-PSO) , the branching degree is gradually

decreased during a run of the algorithm by 𝑘𝑎𝑑𝑎𝑝𝑡

degrees until a certain minimum degree 𝑑𝑚𝑖𝑛 is

reached. This process takes place every 𝑓𝑎𝑑𝑎𝑝𝑡

number of iterations

K. Estimation of Distribution Particle

Swarm Optimizer

Proposed by Iqbal, [M. Iqbal, et al.], the

EDPSO borrows some ideas from 𝐴𝐶𝑂ℝ. EDPSO

works as a canonical PSO but with some

modifications : after the execution of the velocity

update rule shown in Equation (4), EDPSO selects

one Gaussian function. Then, the selected

Gaussian function is evaluated to probabilistically

move the particle to its new position. If the

movement is successful, the algorithm continues

as usual, but if the movement is unsuccessful,

then the selected Gaussian function is sampled in

the same way as 𝐴𝐶𝑂ℝ.

III. EDUCATIONAL PSO

SIMULATOR

This educational PSO simulator can solve

maximization or minimization problems without

transforming the formulas of optimization

problems. It can show convergence curve in real-

time and particle distribution in the searching

space. This educational PSO simulator considers

different PSO algorithm. The variants of PSO

algorithm integrated into this educational PSO

simulator are listed in Table 2.

Table 2. Variants of PSO algorithm integrated

into simulator

Algorithm Reference

Original PSO
J. Kennedy, et al.

(1995)

Local PSO
R. Eberhart, et al.

(1995)

Canonical PSO
M. Clerc, et al.

(2002)

Decreasing Inertia

Weight PSO
Y. Shi, et al. (1999)

Increasing Inertia

Weight PSO

Y.L. Zheng, et al.

(2003)

Stochastic Inertia

Weight PSO

R. Eberhart, et al.

(2001)

Fully Informed PSO
R. Mendes, et. Al.

(2004)

Self-Organizing

Hierarchical PSO with

Time-Varying

Acceleration

Coefficients

A. Ratnaweera, et

al. (2004)

Hierarchical PSO C.-C. Chen (2009)

Adaptive Hierarchical

PSO

S. Janson, et al.

(2005)

Estimation of

Ditribution PSO
M. Iqbal, et al

The educational PSO simulator are arranged in

three layers : Functions Selection, 3D Function

Display dan Optimization Process. In the

Functions Selection Layers, the user can select the

mathematical function problem. Figure 1 show

the main view of the Educational PSO Simulator.

At least there are 100 function available which

user can select. Figure 2 show the Function

Selection Layers. In the left of the front panel is

the list of mathematical function available to

select.

Figure 1. Front Panel of Educational PSO

Simulator

Figure 2. Functions Selection Layers

Figure 3. 3D Function Display Layers

6

TELEKONTRAN, VOL. 1, NO. 1, JANUARI 2013

Figure 4. Optimization Process Layers

3D Function Display Layers is used to display

the function in 3D view. The user can rotate the

function to get better view of the problem. Figure

3 show the 3D Function Display Layers of the

Educational PSO Simulator.

The Optimization Process Layers is used to set

the PSO algorithm, to set parameters that have an

influence on the PSO performance and to

visualization process of each particle. Figure 4

show the Optimization Process Layers.

IV. MATHEMATICAL

OPTIMIZATION PROBLEMS

Several kinds of function benckmark problems

are chosen to demonstrate the performace of

simulator. For the case study, we choose 5

mathematical examples : (i) Sphere function, (ii)

Rosenbrock function, (iii) Ackley‟s function, (iv)

Rastrigin function, (v) Griewank function.

The function and the range of input variables

of Sphere Function are as follows :

min
𝑥

𝑓 𝑥 = 𝑥𝑖
2

𝑁

𝑖=1

−5.12 ≤ 𝑥𝑖 ≤ 5.12

(10)

The function and the range of input variables

of Schaffer Function are as follows :

min
𝑥

𝑓 𝑥 = 0.5 +
𝑎 𝑥

𝑏 𝑥

𝑎 𝑥 = 𝑠𝑖𝑛2 𝑥1
2 + 𝑥2

2 − 0.5

𝑏 𝑥 = 1 + 0.001 𝑥1
2 + 𝑥2

2
2

−100 ≤ 𝑥𝑖 ≤ 100

(11)

The function and the range of input variables

of Ackley‟s Function are as follows :

min
𝑥

𝑓 𝑥 = 𝑎 𝑥 + 𝑏 𝑥 + 20 + 𝑒1

𝑎 𝑥 = −20 ∙ 𝑒𝑥𝑝 −0.2 1

𝑁
 𝑥𝑖

2
𝑁

𝑖=1

𝑏 𝑥 = −𝑒𝑥𝑝
1

𝑁
 cos 2𝜋 ∙ 𝑥𝑖

𝑁

𝑖=1

−32.768 ≤ 𝑥𝑖 ≤ 32.768

(12)

The function and the range of input variables

of Rastrigin Function are as follows :

min
𝑥

𝑓 𝑥 = 10𝑁 + 𝑥𝑖
2 −

𝑁

𝑖=1

 10 cos 2𝜋𝑥𝑖

−5.12 ≤ 𝑥𝑖 ≤ 5.12

(13)

The function and the range of input variables

of Shekel‟s Foxholes Function are as follows :

min
𝑥

𝑓 𝑥 =
1

0.002 + 𝑔 𝑥

𝑔 𝑥 =
1

𝑗 + 𝑥1 − 𝑎1𝑗
6

+ 𝑥2 − 𝑎2𝑗
6

25

𝑗 =1

 𝑎𝑖𝑗 =
−32 −16 0 … 32
−32 −32 −32 … 32

−65.536 ≤ 𝑥𝑖 ≤ 65.536

(14)

V. EXAMPLES

In this section, Simulator is run in Windows 7

platform in the version of LabVIEW 7.

A. Visualization Process

The series picture in Figure 5 shows a run of

the Fully Informed Particle Swarm on the Sphere

Function. Specifically it shows the 0th, 20th, 40th,

60th, 80th and 100th iterations of the run. As the

particles continue in the run, they reach lower and

lower fitness values (signified by an inceased

amount of yellow dot) thus minimizing the

function. Figure 5 also displayed the convergence

process of a group.

7

TELEKONTRAN, VOL. 1, NO. 1, JANUARI 2013

(a) 0th iterations

(b) 20th iterations

(c) 40th iterations

(d) 60th iterations

(e) 80th iterations

(f) 100th iterations

Figure 5. A run of Simulator on the Sphere

FUnction

B. Parameter Settings

We decide to test the particle swarm

optimizers that we included in our study without

tuning their set of parameters specifically for each

test problem. All algorithms were run with the

same set of parameters over all test problems. The

specific parameter settings were those that are

normally used in the literature. Table 4 lists the

algorithms fixed parameter settings that we use in

our experiments.

The maximum number of evaluations to find a

solution was set to 100. We ran the algorithms

100 times on each problem. Maximum velocity

𝑉𝑚𝑎𝑥 is clamped to ±𝑋𝑚𝑎𝑥 where 𝑋𝑚𝑎𝑥 is the

maximum of the search range.

Table 4. Algorithm fixed parameter settings

Algorithm Settings

Original

PSO

Cognitive component 𝜑1 = 2.05

Social component 𝜑2 = 2.05

Local PSO

Cognitive component 𝜑1 = 2.05

Social component 𝜑2 = 2.05

Number of Neighborhood = 3

8

TELEKONTRAN, VOL. 1, NO. 1, JANUARI 2013

Canonical

PSO

Cognitive component 𝜑1 = 2.05

Social component 𝜑2 = 2.05

Constriction factor 𝒳 = 0.729

Number of Neighborhood = 3

Decreasing

Inertia

Weight

Cognitive component 𝜑1 = 2.05

Social component 𝜑2 = 2.05

Initial inertia weight = 0.9

Final inertia weight = 0.4

Number of Neighborhood = 3

Increasing

Inertia

Weight

Cognitive component 𝜑1 = 2.05

Social component 𝜑2 = 2.05

Final inertia weight = 0.9

Initial inertia weight = 0.4

Number of Neighborhood = 3

Stochastic

Inertia

Weight

Cognitive component 𝜑1 = 2.05

Social component 𝜑2 = 2.05

Minimum inertia weight = 0.4

Maximum inertia weight = 0.9

Number of Neighborhood = 3

Fully

Informed

PSO

Sum of the acc. coeff. 𝜑 = 4.1

Constriction factor 𝒳 = 0.729

Number of Neighborhood = 3

Self

Organizing

Hierarchical

PSO

Initial value of 𝜑1 = 2.5

Final value of 𝜑1 = 0.5

Initial value of 𝜑2 = 0.5

Final value of 𝜑2 = 0.5

Number of Neighborhood = 3

Hierarchical

PSO

Cognitive component 𝜑1 = 2

Social component 𝜑2 = 2

w = 0.9

r = 0.95

height of the tree (h) = 3

branching degree (d) = 4

Adaptive

Hierarchical

PSO

Cognitive component 𝜑1 = 2.05

Social component 𝜑2 = 2.05

Constriction factor 𝒳 = 0.729

Initial Branching factor = 20

d min = 2

f adapt/m = 10

k adapt = 3

Estimation

of

Distribution

PSO

Cognitive component 𝜑1 = 2.05

Social component 𝜑2 = 2.05

Constriction factor 𝒳 = 0.729

q = 0.1

epsilone = 0.85

C. Convergence Results

Two input variables (i.e., 2-dimensional space)

have been set in order to show the movement of

particles on contour. 30 independent trials are

conducted to observe the variation during the

evoltionary processes and compare the solution

quality and convergence characteristics.

To successfully implement the PSO, some

parameters must be assigned in advance. The

population size NP is set to 20. Since the

performance of PSO depends on its parameters

such as inertia weight or acceleration coefficients,

it is very important to determine the suitable

values of parameters.

Initial and final stages of the optimization

process for the Sphere function are shown if

Figure 6.

(a) Initial stage

(b) Final stage

Figure 6. Optimization process for the Sphere

Function

Initial and final stages of the optimization

process for the Schaffer function are shown if

Figure 7.

9

TELEKONTRAN, VOL. 1, NO. 1, JANUARI 2013

(a) Initial stage

(b) Final stage

Figure 7. Optimization process for the Schaffer

Function

Initial and final stages of the optimization

process for the Ackley‟s function are shown if

Figure 8.

(a) Initial stage

(b) Final stage

Figure 8. Optimization process for the Ackley‟s

Function

Initial and final stages of the optimization

process for the Rastrigin function are shown if

Figure 9.

(a) Initial stage

(b) Final stage

Figure 9. Optimization process for the Rastrigin

Function

10

TELEKONTRAN, VOL. 1, NO. 1, JANUARI 2013

Initial and final stages of the optimization

process for the Shekel‟s Foxholes function are

shown if Figure 10.

(a) Initial stage

(b) Final stage

Figure 10. Optimization process for the Shekel‟s

Foxholes Function

D. Optimization Results

Table 5 – Table 15 shows the summary result

of 10 runs using each PSO algorithm.

Table 5. Summary of result of 10 runs using

Original PSO

Function Mean Min Max

Sphere 0.001000 0.000000 0.006000

Schaffer 0.382000 0.000000 1.910000

Ackley 0.355000 0.000000 1.965000

Rastrigin 0.000000 0.000000 0.000000

Shekel

Foxholes
2.499000 1.001000 3.968000

Table 6. Summary of result of 10 runs using

Local PSO

Function Mean Min Max

Sphere 0.000000 0.000000 0.000000

Schaffer 0.401000 0.000000 1.798000

Ackley 0.337000 0.000000 2.397000

Rastrigin 0.164000 0.000000 1.049000

Shekel

Foxholes
2.066000 0.998000 5.914000

Table 7. Summary of result of 10 runs using

Canonical PSO

Function Mean Min Max

Sphere 0.000000 0.000000 0.000000

Schaffer 0.036000 0.000000 0.057000

Ackley 0.001000 0.000000 0.002000

Rastrigin 0.122000 0.000000 0.995000

Shekel

Foxholes
5.394000 0.998000 16.441000

Table 8. Summary of result of 10 runs using

Decreasing Inertia Weight PSO

Function Mean Min Max

Sphere 0.000000 0.000000 0.000000

Schaffer 0.122000 0.000000 0.313000

Ackley 0.005000 0.001000 0.013000

Rastrigin 0.119000 0.000000 1.013000

Shekel

Foxholes
2.965000 0.998000 10.763000

Table 9. Summary of result of 10 runs using

Increasing Inertia Weight PSO

Function Mean Min Max

Sphere 0.000000 0.000000 0.000000

Schaffer 0.134000 0.055000 0.314000

Ackley 0.004000 0.000000 0.013000

Rastrigin 0.129000 0.000000 0.996000

Shekel

Foxholes
1.832000 0.998000 3.975000

Table 10. Summary of result of 10 runs using

Stochastic Inertia Weight PSO

Function Mean Min Max

Sphere 0.000000 0.000000 0.000000

Schaffer 0.348000 0.000000 0.864000

Ackley 0.110000 0.000000 0.693000

Rastrigin 0.108000 0.000000 0.436000

Shekel

Foxholes
2.066000 0.998000 4.101000

11

TELEKONTRAN, VOL. 1, NO. 1, JANUARI 2013

Table 11. Summary of result of 10 runs using

Fully Informed PSO

Function Mean Min Max

Sphere 0.000000 0.000000 0.000000

Schaffer 0.105000 0.000000 0.298000

Ackley 0.002000 0.000000 0.005000

Rastrigin 0.100000 0.000000 0.996000

Shekel

Foxholes
3.271000 0.998000 7.874000

Table 12. Summary of result of 10 runs using

HPSOTYAC

Function Mean Min Max

Sphere 0.000000 0.000000 0.000000

Schaffer 0.062000 0.016000 0.104000

Ackley 0.001000 0.000000 0.004000

Rastrigin 0.199000 0.000000 0.995000

Shekel

Foxholes
4.236000 0.998000 12.671000

Table 13. Summary of result of 10 runs using

Hierarchical PSO

Function Mean Min Max

Sphere 0.000009 0.000000 0.000037

Schaffer 1.308884 0.998004 2.775963

Ackley 0.061050 0.011576 0.138272

Rastrigin 0.081365 0.006938 0.239305

Shekel

Foxholes
1.073859 0.998013 1.461168

Table 14. Summary of result of 10 runs using

Adaptive Hierarchical PSO

Function Mean Min Max

Sphere 0.000000 0.000000 0.000000

Schaffer 0.059000 0.015000 0.128000

Ackley 0.001000 0.000000 0.006000

Rastrigin 0.299000 0.000000 0.995000

Shekel

Foxholes
3.530000 0.998000 15.504000

Table 15. Summary of result of 10 runs using

Estimation of Distribution PSO

Function Mean Min Max

Sphere 0.000000 0.000000 0.000000

Schaffer 0.062000 0.006000 0.128000

Ackley 0.000000 0.000000 0.002000

Rastrigin 0.241000 0.000000 0.997000

Shekel

Foxholes
1.595000 0.998000 3.968000

VI. CONCLUSION

This paper presents an educational simulator

for particle swarm optimization (PSO) and

application for solving mathematical test

functions. Using this simulator, instructor and

students can select the test functions for

simulation and set the parameters that have an

influence on the PSO performance. Through

visualization process of each particle and

variation of the value of objective function, the

simulator is particularly effective in providing

users with an intuitive feel for the PSO algorithm.

This simulator is expected to be an useful tool for

students.

In the present version of educational simulator

of PSO, only unconstrained optimization

problems can be solved. The PSO algorithms for

constrained optimization problems will be

integrated to simultor soon.

REFERENCES

[1] A. Mohais, R. Mendes, C. Ward, and C. Postoff, (2005),

“Neighborhood restructuring in particle swarm optimization”,

Proceedings of the 18th Australian Joint Conference on

Artificial Intelligence, Berlin, pp 776 – 785.

[2] A. Ratnaweera, S.K. Halgamuge, and H.C. Watson (2004),

“Self-Organizing Hierarchical Particle Swarm Optimizer With

Time-Varying Acceleration Coefficients”, IEEE Transactions

on Evolutionary Computation, Vol. 8, No. 3, pp 240 – 255

[3] C.-C. Chen, (2009), “Hierarchical Particle Swarm

Optimization for Optimization Problems”, Tamkang Journal of

Science and Engineering, Vol. 12, No. 3, pp. 289 – 298

[4] J. Kennedy and R. Eberhart (1995). “Particle Swarm

Optimization”, Proc. IEE Int. Conf Neural Networks

(ICNN‟95), vol. IV, Perth, Australia, pp 1942 – 1948

[5] L.d.S. Coelho and C. A. Sierakowski (2008), “A Software Tool

for Teaching of Particle Swarm Optimization Fundamentals”,

ScienceDirect Advances in Engineering Software, Vol 39, pp

877 – 887

[6] M. Clerc and J. Kennedy (2002), “The Particle Swarm-

Explosion, Stability and Convergence in a Multidimensional

Complex Space”, IEEE Transactions on Evolutionary

Computation, vol 6, num. 1, pp 58 - 73

[7] M. Iqbal, Marco A. Montes, “An Estimation of Distribution

Particle Swarm Optimization Algorithm”

[8] Second (2nd) ICEO : Second International Contest on

Evolutionary Optimization, www-document,

http://iridia.ulb.ac.be/langerman/2ndICEO.html

[9] R. Eberhart and J. Kennedy (1995), “A new optimizer using

particle swarm theory” In Proceedings of the 6th International

Symposium on Micro Machine and Human Science,

Piscataway, NJ, IEEE Press, pp 39 -43

[10] R. Eberhart, Y. Shi (2001), “Tracking and optimizing dynamic

systems with particle swarms”, In proceedings of the 2001

IEEE Congress on Evolutionary Computation, Pisctaway, NJ,

IEEE Press, pp 94 - 100

[11] R. Mendes, J. Kennedy, J. Neves, (2004), “The Fully Informed

Particle Swarm : Simpler, maybe better”, IEEE Transactions

on Evolutionary Computation, vol 8, no. 3, pp 204 - 210

[12] R. Qi, B. Hu and P.H. Cournede, “PSOTS : A Particle Swarm

Optimization Toolbox in Scilab”, OSSC, pp 107 – 114, (2009)

[13] S. Janson, M. Middendorf, (2005), “A Hierarchical Particle

Swarm Optimizer and Its Adaptive Variant”, IEEE

12

TELEKONTRAN, VOL. 1, NO. 1, JANUARI 2013

Transactions on Systems, Man and Cybernetics, Vol. 35, No 6,

pp 1272 – 1282

[14] W. N. Lee and J. B. Park (2011), “Educational Simulator for

Partilce Swarm Optimization and Economic Dispatch

Applications”, MATLAB – A Ubiquitous Tool for the Practical

Engineer, pp 81 – 110

[15] Y. L.. Zheng, L.H. Ma, L.Y. Zhang, J.X. Qian, (2003)

“Empirical study of particle swarm optimizer with an

increasing inertia weight”, In: Proceedings of the 2003 IEEE

Congress on Evolutionary Computation, Piscataway, NJ, IEEE

Press, pp 221 - 226

[16] Y. Shi, R. Eberhart (1999), “Empirical study of particle swarm

optimization”, In: Proceedings of the 1999 IEEE Congress on

Evolutionary Computation, Piscatawaym, NJ, IEEE Press, pp

1945 - 1950

[17] Birge B. “PSOt – a particle swarm optimization toolbox for use

with Matlab.” Proceedings of the swarm intelligence

symposium Indianapolis, USA, pp 182 – 186, (2003)

[18] Hartmut Pohlheim, “Genetic and Evolutionary Algorithm

Toolbox for Matlab : GEATbx Examples; Examples of

Objective Functions”, (December 2006)

[19] Hartmut Pohlheim, “Genetic and Evolutionary Algorithm

Toolbox for Matlab : GEATbx Introduction; Evolutionary

Algorithms: Overview, Methods and Operators” , (December

2006)

[20] Hartmut Pohlheim, “Genetic and Evolutionary Algorithm

Toolbox for Matlab : GEATbx Tutorial” , (December 2006)

[21] Kenneth Lee, “Particle Swarm Optimization and Social

Interactions Between Agents”, (2008)

[22] J. K. Vis, “Particle Swarm Optimizer for Finding Robust

Optima”, (June 2009)

[23] Juan R. Castro, Oscar Castillo, Luis G. Martinez, “Interval

Type-2 Fuzzy Logic Toolbox”

[24] Marco A. Montes, T. Stutzle, M. Birattari and M. Dorigo, “A

Comparison of Particle Swarm Optimization Algorithms Based

on Run-Length Distributions”

[25] Marco A. Montes, “On the Performance of Particle Swarm

Optimizers”, IRIDIA (2006)

[26] M. Settles, “An Introduction to Particle Swarm Optimization”,

(November 2005)

[27] R. Poli, J. Kennedy and T. Blackwell, “Particle Swarm

Optimization : An Overview”, Swarm Intell, Vol. 1, pp 33 – 57,

(August 2007)

[28] R. C. Eberhart, Y. Shi, “Particle Swarm Optimization:

Developments, Applications and Resources”, IEEE, pp 81 – 86,

(2001)

[29] R. Umarani, V. Selvi, “Particle Swarm Optimization –

Evolution, Overview and Application”, International Journal of

Engineering Science and Technologi, Vol. 2(7), pp 2802 –

2806, (2010)

[30] S. Das, A. Abraham, A. Konar, “Particle Swarm Optimization

and Differential Evolution Algorithms : Technical Analysis,

Application and Hybridization Perspectives”, Studies in

Computational Intelligence, 116, pp 1-38, (2008)

[31] “Simple Optimization Toolbox For Use with Matlab”,

(November 2006)

[32] Ernesto P. Adorio, MVF – Multivariate Test Functions Library

in C for Unconstrained Global Optimization, (2005)

[33] Hartmun Pohlheim, Genetic and Evolutionary Algorithm

Toolbox for Matlab (GEATbx) Examples of Objective

Functions, (2006)

[34] M. Montaz Ali, A Numerical Evaluation of Several Stochastic

Algorithms on Selected Continuous Global Optimization Test

Problem, (2005)

[35] Marcin Molga, Czeslas Smutnicki, Test Function for

Optimization Need, (2005)

[36] Kaj Madsen, Julius Zilinskas, Testing branch-and-bound

methods for global optimization, (2000)

[37] Xin-She Yang, Test Problem in Optimization, in: Engineering

Optimization: An Introduction with Metaheuristic Applications

(Eds Xin-She Yang), John Wiley & Sons. (2010)

[38] A. Georgieva, I. Jordanov, “Global Optimization Based on

Novel Heuristics, Low-Discrepancy Sequences and Genetic

Algorithms”, European Journal of Operational Research, Vol.

196, pp 413 – 422, (2009)

[39] Ali, M., Pant, M. And Abraham, A. “Simplex Differential

Evolution”, Acta Polythechnica Hungarica, Vol. 6, No. 5,

(2009)

[40] Aluffi-Pentini, F., Parisi, V. And Zirilli, F., Global

Optimization and Stochastic Differential Equations. Journal of

Optimization Theory and Application 47, 1-16., (1985)

[41] Benke,K.K. and Skinner, D.R., A Direct Search Algorithm for

Global Optimization of Multivariate Functions. The Autralian

Computer Journal 23, 73 – 85. (1991)

[42] Bohachevsky, M.E., Johnson, M.E. and Stein, M.L.,

Generalized Simulated Annealing for Function Optimization,

Technometrics 28, 209-217., (1986)

[43] Breiman, L. and Cutler, A., A Deterministic Algorithm for

Global Optimization, Mathematical Programming 58, 179 –

199., (1993)

[44] Corana, A., Marchesi, M., Martini, C. and Ridella, S.,

Minimizing Multimodal Functions of Continuous Variables

with the “Simulated Annealing Algorithm”, ACM Transactions

on Mathematical Software, pp 272 – 280, (1987)

[45] Dekkers, A. And Aarts, E., Global Optimization and Simulated

Annealing, Mathematical Programming 50, pp. 367 – 393,

(1991)

[46] Dixon, L. And Szego, G., Toward Global Optimization, North

Holland, New York, (1975)

[47] Dixon, L. and Szego, G., Toward Global Optimization, Vol. 2,

North Holland, New York, (1978)

[48] Griewank, A.O., Generalized Descent for Global Optimization.

Journal of Optimization Theory and Applications 34, 11-39,

(1981)

[49] Himmelblau, D.M., Applied Nonlinear Programming,

McGraw-Hill, New York, (1972)

[50] Ingber, L., Simulated Annealing : Practice Versus Theory,

Jurnal of Mathematical and Computer Modeling, Vol. 18, no

11, pp 29 – 57, (1993)

[51] Jansson, C. And Knuppel, O., A Branch and Bound Algorithm

for Bound Constrained Optimization Problems without

Derivatives. Journal of Global Optimization 7, 297 – 331,

(1995)

[52] K. Muller and L. D. Brown, Location of Saddle Points and

Minimum Energy Paths by a Constrained Simplex Optimization

Procedure, Theoret. Chim. Acta, 53:75-93, (1979)

[53] Kwon, Y.D., Kwon, S.B., and Kim, J.Y., Convergence

Enhanced Genetic Algorithm with Successive Zooming Method

for Solving Continuous Optimization Problems, Computers and

Structures 81, pp. 1715 – 1725, (2003)

[54] Levy, A.V. and Montalvo, A., The Tunneling Algorithm for the

Global Minimization of Functions. Society for Industrial and

Applied Mathematics 6, 15 – 29, (1985)

[55] M. J. Hirsch, P. M. Pardalos, M.G.C.Resende, Speeding Up

Continuous Grasp, AT&T Labs Research Technical Report,

(2006)

[56] Mathworks, Global Optimization Toolbox User’s Guide, 2011

[57] McCormick, G.P., Applied Nonlinear Programming, Theory,

Algorithms and Applications, John Wiley and Sons, New York,

(1982)

[58] Muhlenbein, H., Schomisch, S. and Born, J., The Parallel

Genetic Algorithm s Function Optimizer, Proceedings of the

Fourth International Conference on Genetic Algorithms,

Morgan Kaufman : 271-278, (1991)

[59] Neumaier, A., Global and Local Optimization, www-

document, http://solon.cma.univie.ac.at/~neum/glopt.html,

(2003)

[60] Price, W. L., Global Optimization by Controlled Random

Search, Computer Journal 20, 367 – 370, (1977)

[61] Price, K.V., Private Communication, 836 Owl Circle,

Vacaville, CA 95687, (2002)

[62] Michalewicz, Z., Genetic Algorithms + Data Structures =

Evolution Programs, Springer-Verlag, Berlin/Heidelberg/New

York, (1996)

[63] Rody P. S. Oldenhuis, www-document, (2009)

[64] Salomon, R., Reevaluating Genetic Algorithms Performance

Under Coordinate Rotation of Benchmark Functions,

BioSystems 39(3): 263 – 278, (1995)

[65] Schwefel, H.P., Evolution and Optimum Seeking, John Wiley

and Sons, New York, (1995)

13

TELEKONTRAN, VOL. 1, NO. 1, JANUARI 2013

[66] Storn, R. And Price, K., Differential Evolution : A Simple and

Efficient Heuristic for Global Optimization Over Continuous

Spaces. Journal of Global Optimization 11, 341 – 359, (1997)

[67] Thangaraj, R., Pant, M., Abraham A. And Snasel, V. Modified

Particle Swarm Optimization with Time Varying Velocity

Vector, International Journal of Innovative Computing,

Information and Control, Vol. 8, Num. 1(A), (2012)

[68] Torn, A. And Zilinskas, A., Global Optimization, Lecture

Notes in Computer Science, Vol. 350, Springer-Verlag,

Berlin/Heidelberg/New York, (1989)

[69] W. Wang, T.-M. Hwang, C.Juang, J. Juang, C.-Y. Liu and W.-

W. Lin., Chaotic Behaviors of Bistabe Laser Diodes and Its

Application in Synchronization of Optical Communication,

Japanese Journal of Applied Physics, 40 (10) : 5914-5919,

(2001)

[70] Wolfe, M.A, Numerical Methods for Unconstrained

Optimization, Van Nostrand Reinhold Company, New York,

(1978)

[71] Zabinsky, Z.B. Graesser, D.L., Tuttle, M.E. and Kim, G.I.,

Global Optimization of Composite Laminates using Improving

Hit and Run, In: Floudas C. And Pardalos P. (eds.), pp. 343 –

368. Recent Advances in Global Optimization, Princeton

University Press, (1992)

14

TELEKONTRAN, VOL. 1, NO. 1, JANUARI 2013

Appendix A. A Collection of Benchmark Optimization Test Problems

No Name Source
No. Of

Vars.

Upper Bound,

Lower Bound
Global Optimum

1. Ackley Function Storn & Price (1997) 1 – N (-32.768, 32.768) 0

2. Alphine Function R. Thangaraj et al. (2012) 1 – N (-10, 10) 0

3. Aluffi-Pentini Function Aluffi-Pentiti et al. (1985) 2 (-10,10) -0.3523

4. Banana Shape Function 2 (-2, 2) -25

5. Beale Function Ernesto P. Adorio (2005) 2 (-4.5, 4.5) 0

6. Becker & Lago Function Price (1997) 2 (-10, 10) 0

7. Bird Function 2 (-20, 20) -106.764536

8. Bohachevsky 1 Function Bohachevsky et al. (1986) 2 (-50, 50) 0

9. Bohachevsky 2 Function Bohachevsky et al. (1986) 2 (-50, 50) 0

10. Booth Function Ernesto P. Adorio (2005) 2 (-10, 10) 0

11. Box and Betts Function Kaj Madsen (2000) 3
(0.9, 1.2); (9,

11.2); (0.9, 1.2)
0

12. Branin RCOS Function Dixon and Szego (1978) 2 (-5, 10); (0, 15) 0.397887357

13. Bukin Function 2 (-20, 20) 0

14. Camel Function 2 (-2, 2) -7.0625

15. 3-Hump Camel Function Dixon and Szego (1975) 2 (-5, 5) 0

16. 6-Hump Camel Function Dixon and Szego (1975) 2 (-5, 5) -1.03162845

17. Carrom Table Function Rody P. S. O. (2009) 2 (-10, 10) -24.1568155

18. Chichinadze Function Rody P. S. O. (2009) 2 (-30, 30) -42.9443870

19. Colville Function Ali, M. et. Al (2009) 4 (0, 10) 0

20. Corana‟s Parabola Function Corana (1987) 4 (-1000, 1000) 0

21. Cosine Mixture Function Breiman and Culter (1993) 1 – N (-1, 1)
0.2 for N = 2
0.4 for N = 4

22. Cross-in-tray Function Rody P. S. O. (2009) 2 (-10, 10) -2.06261187

23. Cross-leg table Function Rody P. S. O. (2009) 2 (-10, 10) -1

24. Crowned Cross Function Rody P. S. O. (2009) 2 (-10, 10) 0.0001

25. Deceptive Functions Marcin Molga (2005) 2 - N (0, 1)

26. Dekkers and Aarts Function Dekkers and Aarts (1991) 2 (-10, 10) -24777

27. Dixon and Price Function 1 – N (-10, 10)

28. Drop Wave Functions Marcin Molga (2005) 2 (-5.12, 5.12) -1

29. Easom‟s Functions Michalewicz (1996) 2 – N (-60, 60) -1

30. Eggholder Function Ernesto P. Adorio (2005) 2 – N (-512, 512) -959.64 for N = 2

31.
Epistatic Michalewicz

Function
Second ICEO 5, 10 (0, pi) -4.687658 for N = 5

32. Exponential Function Breiman and Culter (1993) 1 – N (-1, 1) 1

33. Giunta Function Rody P. S. O. (2009) 2 (-1, 1) 0,0644704205

34. Goldstein-Price‟s function Dixon and Szego (1978) 2 (-2, 2) 3

35. Griewank „s Function Griewank (1981) 1 – N (-600, 600) 0

36. Gulf Research Problem Himmelblau (1972) 3 (0.1, 100) 0

37. Hartman 3 Problem Dixon and Szego (1978) 3 (0, 1) -3.86278214782

38. Hartman 6 Problem Dixon and Szego (1978) 6 (0,1) -3.32236801141

39. Helical Valley Problem Wolfe (1978) 3 (-10, 10) 0

40. Himmelblau Function Ernesto P. Adorio (2005) 2 (-6, 6) 0

41. Holder Table Function Rody P. S. O. (2009) 2 (-10, 10) -19.2085025678

42. Hosaki Function Benke and Skinner (1991) 2 (0, 6) -2.3458

43. Hyper-ellipsoid function Storn & Price (1997) 1 – N (-5.12, 5.12) 0

44. Kowalik Function
Jansson and Knuppel

(1995)
4 (0, 0.42) 0.00030748

45. Kwon Function Kwon (2003) 2 (-1, 1) -16.0917200

46. Langermann‟s Function Marcin Molga (2005) 2 (0, 10) -4.15581

47. Levy and Montalvo 1 Function Levy and Montalvo (1985) 1 – N (-10, 10) 0

48. Levy and Montalvo 2 Function Levy and Montalvo (1985) 1 – N (-10, 10) 0

49. Lyapunov Exponents Wang (2001) 2 (20, 30)

50. Matyas Function Ernesto P. Adorio (2005) 2 (-10, 10) 0

51. McCormik Function McCormik (1982) 2 (-1.5, 4), (-3, 3) -1.9133

52. Meyer and Roth Function Wolfe, 1978 3 (-10, 10) 0.0004

53. Michalewicz‟s Function Second ICEO 2 – N (0, pi)
-1.8013 for N = 2
-4.6876 for N = 5

-9.660 for N = 10

54. Miele and Cantrell Function Wolfe, 1978 4 (-1, 1) 0

15

TELEKONTRAN, VOL. 1, NO. 1, JANUARI 2013

55. Modified Langerman Function Second ICEO 5, 10 (0, 10) -0.965

56.
Muller-Brown Surface

Function
K. Muller, (1979) 2 (-1.5, 1) -146. 699

57. Multi-Gaussian Function Benke & Skinner, (1991) 2 (-2, 2) 1.29695

58. Multimod Function Ernesto P. Adorio (2005) 1 – N (-10, 10) 0

59. Neumaier 2 Function Neumaier (2003) 4 (0, 4) 0

60. Neumaier 3 Function Neumaier (2003) 2 – N (-N^2, N^2) -(N*(N+4)*(N-1))/6

61. Odd Square Function Second ICEO 2 – 20 (-15, 15) -1.143833

62. Paviani Function Kaj Madsen, 2000 10 (2.001, 9.999) -45.77847

63. Peaks Function Mathworks, 2011 2 (-4, 4) -6.55113

64. Penholder Function Rody P. S. O. (2009) 2 (-11, 11) -0.9635348327265

65. Periodic Function Price (1977) 2 (-10, 10) 0.9

66. Perm Function Xin-She Yang (2010) 2 - N (-N, N) 0

67. Perm0 Function Xin-She Yang (2010) 2 - N (-N, N) 0

68. Powell‟s Quadratic Function Wolfe (1978) 4 (-10, 10) 0

69.
Price‟s Transistor Modelling

Function
Price (1977) 9 (-10, 10) 0

70. Quartic Function Ali, M. et. Al (2009) 2 – N (-1.28, 1.28) Random

71. Rastrigin‟s Function Torn and Zilinskas (1989) 1 – N (-5.12, 5.12) 0

72. Rosenbrock‟s Function Schwefel (1995) 2 – N (-2.048, 2.048) 0

73.
Rotated Hyper-Ellipsoid

Function
Marcin Molga (2005) 1 – N (-65.536, 65.536) 0

74. Salomon Function Salomon (1995) 2 – N (-100, 100) 0

75. Sawtoothxy Function Mathworks, 2011 2 (-20, 20) 0

76. Schaffer 1 Function Michalewicz (1996) 2 – N (-100, 100) 0

77. Schaffer 2 Function Michalewicz (1996) 2 – N (-100, 100) 0

78. Schwefel‟s Function Muhlenbein (1991) 1 – N (-500, 500) -418.9829N

79. Shekel 5 Function Dixon and Szego (1978) 4 (0, 10) -10.1531996790582

80. Shekel 7 Function Dixon and Szego (1978) 4 (0, 10) -10.4029405668187

81. Shekel 10 Function Dixon and Szego (1978) 4 (0, 10) -10.5364098166920

82. Shekel‟s Foxholes Marcin Molga (2005) 2 (-65.536, 65.536) 0.998004

83. Shekel‟s Foxholes Function 5d Dixon and Szego (1978) 5, 10 (0, 10) -10.5046, fot N = 5

84. Shubert‟s Function Levy and Montalvo (1985) 2 – N (-10, 10) -186.7309, for N = 2

85. Shubert‟s Function 2 R. Thangaraj et al. (2012) 2 – N (-10, 10) -24.062499

86. Sinusoidal Function Zabinsky (1992) 2 – N (0, 180)
-(A+1), default A =

2.5

87. Sphere Function Storn & Price (1997) 1 – N (-5.12, 5.12) 0

88. Step Function R. Thangaraj et al. (2012) 1 – N (-1, 1) 0

89.
Sum of Different Power

Functions
Marcin Molga (2005) 1 – N (-1, 1) 0

90. Storn‟s Tchebychev Function Price (2002) 9 (-128, 128) 0

91. Testtube holder function Rody P. S. O. (2009) 2 (-10, 10) -10.872299901558

92. Trefethen4 Function Ernesto P. Adorio (2005) 2
(-6.5, 6.5); (-4.5,

4.5)
-3.30686865

93. Trid Function M.J.Hirsch (2006) 2 – N (-N^2, N^2)
-50 for N = 6

-210 for N = 10

94. Tripod Function Ali, M. et. Al (2009) 2 (-100, 100) 0

95. Whitley Function A. Georgieva (2009) 2 – N (-100, 100) 0

96. Wood Function Wolfe (1978) 4 (-10, 10) 0

97. Xin-She Yang‟s Function 1 Xin-She Yang (2010) 1 – N (-2pi, 2pi) 0

98. Xin-She Yang‟s Function 2 Xin-She Yang (2010) 1 – N (-10, 10) -0.6065

99. Xin-She Yang‟s Function 3 Xin-She Yang (2010) 2 – N (-20, 20) -1 for beta = 15

100. Xin-She Yang‟s Function 4 Xin-She Yang (2010) 1 – N (-10, 10) -1

101. Xin-She Yang‟s Function 5 Xin-She Yang (2010) 2 (0, 10) Random

102. Zakharov Function Xin-She Yang (2010) 2 – N (-10, 10) 0

103. Zettl Function Rody P. S. O. (2009) 2 (-10, 10) -0.0037912372204

